
 RELATIONAL DATABASE MANAGEMENT SYSTYEM

UNIT I

INTRODUCTION:

 Database management system is software that is used to manage the database. The database is a
collection of inter-related data which is used to retrieve, insert and delete the data efficiently. It is also used to
organize the data in the form of a table, schema, views, and reports, etc.

 For example: The college Database organizes the data about the admin, staff, students and faculty etc.

Using the database, you can easily retrieve, insert, and delete the information.

Database Management System

o Database management system is software which is used to manage the database. For
example: MySQL, Oracle, etc are a very popular commercial database which is used in different
applications.

o DBMS provides an interface to perform various operations like database creation, storing data in it,
updating data, creating a table in the database and a lot more.

o It provides protection and security to the database. In the case of multiple users, it also maintains data
consistency.

DBMS allows users the following tasks:

o Data Definition: It is used for creation, modification, and removal of definition that defines the
organization of data in the database.

o Data Updation: It is used for the insertion, modification, and deletion of the actual data in the database.

o Data Retrieval: It is used to retrieve the data from the database which can be used by applications for
various purposes.

o User Administration: It is used for registering and monitoring users, maintain data integrity, enforcing
data security, dealing with concurrency control, monitoring performance and recovering information
corrupted by unexpected failure.

Characteristics of DBMS

o It uses a digital repository established on a server to store and manage the information.

o It can provide a clear and logical view of the process that manipulates data.

o DBMS contains automatic backup and recovery procedures.

o It contains ACID properties which maintain data in a healthy state in case of failure.

o It can reduce the complex relationship between data.

o It is used to support manipulation and processing of data.

o It is used to provide security of data.

o It can view the database from different viewpoints according to the requirements of the user.

Advantages of DBMS

o Controls database redundancy: It can control data redundancy because it stores all the data in one
single database file and that recorded data is placed in the database.

o Data sharing: In DBMS, the authorized users of an organization can share the data among multiple
users.

o Easily Maintenance: It can be easily maintainable due to the centralized nature of the database system.

o Reduce time: It reduces development time and maintenance need.

o Backup: It provides backup and recovery subsystems which create automatic backup of data
from hardware and software failures and restores the data if required.

o multiple user interface: It provides different types of user interfaces like graphical user interfaces,
application program interfaces

Disadvantages of DBMS

o Cost of Hardware and Software: It requires a high speed of data processor and large memory size to
run DBMS software.

o Size: It occupies a large space of disks and large memory to run them efficiently.

o Complexity: Database system creates additional complexity and requirements.

o Higher impact of failure: Failure is highly impacted the database because in most of the organization,
all the data stored in a single database and if the database is damaged due to electric failure or database
corruption then the data may be lost forever.

DATA MODELS:

o The data which is stored in the database at a particular moment of time is called an instance of the
database.

o The overall design of a database is called schema.

o A database schema is the skeleton structure of the database. It represents the logical view of the entire
database.

o A schema contains schema objects like table, foreign key, primary key, views, columns, data types,
stored procedure, etc.

o A database schema can be represented by using the visual diagram. That diagram shows the database
objects and relationship with each other.

o A database schema is designed by the database designers to help programmers whose software will
interact with the database. The process of database creation is called data modelling.

A schema diagram can display only some aspects of a schema like the name of record type, data type, and
constraints. Other aspects can't be specified through the schema diagram. For example, the given figure neither
shows the data type of each data item nor the relationship among various files.

In the database, actual data changes quite frequently. For example, in the given figure, the database changes
whenever we add a new grade or add a student. The data at a particular moment of time is called the instance
of the database.

DATA LANGUAGES:

o A DBMS has appropriate languages and interfaces to express database queries and updates.

o Database languages can be used to read, store and update the data in the database.

Types of Database Languages

1. Data Definition Language (DDL)

o DDL stands for Data Definition Language. It is used to define database structure or pattern.

o It is used to create schema, tables, indexes, constraints, etc. in the database.

o Using the DDL statements, you can create the skeleton of the database.

o Data definition language is used to store the information of metadata like the number of tables and
schemas, their names, indexes, columns in each table, constraints, etc.

Here are some tasks that come under DDL:

o Create: It is used to create objects in the database.

o Alter: It is used to alter the structure of the database.

o Drop: It is used to delete objects from the database.

o Truncate: It is used to remove all records from a table.

o Rename: It is used to rename an object.

o Comment: It is used to comment on the data dictionary.

These commands are used to update the database schema that's why they come under Data definition
language.

2. Data Manipulation Language (DML)

DML stands for Data Manipulation Language. It is used for accessing and manipulating data in a database. It
handles user requests.

Here are some tasks that come under DML:

 Select: It is used to retrieve data from a database.

o Insert: It is used to insert data into a table.

o Update: It is used to update existing data within a table.

o Delete: It is used to delete all records from a table.

o Merge: It performs UPSERT operation, i.e., insert or update operations.

o Call: It is used to call a structured query language or a Java subprogram.

o Explain Plan: It has the parameter of explaining data.

o Lock Table: It controls concurrency.

3. Data Control Language (DCL)

o DCL stands for Data Control Language. It is used to retrieve the stored or saved data.

o The DCL execution is transactional. It also has rollback parameters.

(But in Oracle database, the execution of data control language does not have the feature of rolling back.)

Here are some tasks that come under DCL:

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

There are the following operations which have the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE and SELECT.

4. Transaction Control Language (TCL)

TCL is used to run the changes made by the DML statement. TCL can be grouped into a logical transaction.

Here are some tasks that come under TCL:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last Commit

Transaction Management

Transactions are a set of operations used to perform a logical set of work. It is the bundle of all the
instructions of a logical operation. A transaction usually means that the data in the database has changed. One
of the major uses of DBMS is to protect the user’s data from system failures. It is done by ensuring that all the

data is restored to a consistent state when the computer is restarted after a crash. The transaction is any one
execution of the user program in a DBMS. One of the important properties of the transaction is that it contains
a finite number of steps. Executing the same program multiple times will generate multiple transactions.

Example: Consider the following example of transaction operations to be performed to withdraw cash from
an ATM vestibule.

 Steps for ATM Transaction

1. Transaction Start.

2. Insert your ATM card.

3. Select a language for your transaction.

4. Select the Savings Account option.

5. Enter the amount you want to withdraw.

6. Enter your secret pin.

7. Wait for some time for processing.

8. Collect your Cash.

9. Transaction Completed.

A transaction can include the following basic database access operation.

 Read/Access data (R): Accessing the database item from disk (where the database stored data) to
memory variable.

 Write/Change data (W): Write the data item from the memory variable to the disk.

 Commit: Commit is a transaction control language that is used to permanently save the changes done
in a transaction

Example: Transfer of 50₹ from Account A to Account B. Initially A= 500₹, B= 800₹. This data is brought to
RAM from Hard Disk.

R(A) -- 500 // Accessed from RAM.

A = A-50 // Deducting 50₹ from A.

W(A)--450 // Updated in RAM.

R(B) -- 800 // Accessed from RAM.

B=B+50 // 50₹ is added to B's Account.

W(B) --850 // Updated in RAM.

commit // The data in RAM is taken back to Hard Disk.

Stages of Transaction

Note: The updated value of Account A = 450₹ and Account B = 850₹.

All instructions before committing come under a partially committed state and are stored in RAM. When the
commit is read the data is fully accepted and is stored on Hard Disk.

If the transaction is failed anywhere before committing we have to go back and start from the beginning. We
can’t continue from the same state. This is known as Roll Back.

Desirable Properties of Transaction (ACID Properties)

For a transaction to be performed in DBMS, it must possess several properties often called ACID properties.

 A – Atomicity

 C – Consistency

 I – Isolation

 D – Durability

Transaction States

Transactions can be implemented using SQL queries and Servers. In the below-given diagram, you can see
how transaction states work.

Transaction States

The transaction has the four properties. These are used to maintain consistency in a database, before and after
the transaction.
Property of Transaction:
1. Atomicity
2. Consistency
3. Isolation
4. Durability

Atomicity:

 t states that all operations of the transaction take place at once if not, the transactions aborted.

 There is no midway, i.e., the transaction cannot occur partially. Each transaction is treated as one unit
and either run to completion or is not executed at all.

 Atomicity involves the following two operations:

 Abort: If a transaction aborts, then all the changes made are not visible.

 Commit: If a transaction commits then all the changes made are visible.

Consistency:

 The integrity constraints are maintained so that the database is consistent before and after the
transaction.

 The execution of a transaction will leave a database in either its prior stable state or anew stable state.

 The consistent property of database states that every transaction sees a consistent database instance.

 The transaction is used to transform the database from one consistent state to another consistent state.

Isolation:

 It shows that the data which is used at the time of execution of a transaction cannot be used by the
second transaction until the first one is completed.

 In isolation, if the transaction T1 is being executed and using the data item X, then that data item can’t
be accessed by any other transaction T2 until the transaction T1ends.

 The concurrency control subsystem of the DBMS enforced the isolation property

Durability:

 The durability property is used to indicate the performance of the database’s consistent state. It states
that the transaction made the permanent changes.

 They cannot be lost by the erroneous operation of a faulty transaction or by the system failure. When
a transaction is completed, then the database reaches a state known as the consistent state. That
consistent state cannot be lost, even in the event of a system’s failure.

 The recovery subsystem of the DBMS has the responsibility of Durability property.

IMPLEMENTATION OF ATOMICITY AND DURABILITY:

The recovery-management component of a database system can support atomicity and durability by a variety
of schemes.

E.g. the shadow-database scheme:

Shadow copy:

 In the shadow-copy scheme, a transaction that wants to update the database first creates a complete
copy of the database.

 All updates are done on the new database copy, leaving the original copy, the shadow copy,
untouched. If at any point the transaction has to be aborted, the system merely deletes the new copy.
The old copy of the database has not been affected.

 This scheme is based on making copies of the database, called shadow copies, assumes that only one
transaction is active at a time.

 The scheme also assumes that the database is simply a file on disk. A pointer called db pointer is
maintained on disk; it points to the current copy of the database.

TRANSACTION ISOLATION LEVELS IN DBMS:
Some other transaction may also have used value produced by the failed transaction. So we also have to
rollback those transactions.
The SQL standard defines four isolation levels :
1. Read Uncommitted – Read Uncommitted is the lowest isolation level. In this level,one transaction may
read not yet committed changes made by other transaction, therebyallowing dirty reads. In this level,
transactions are not isolated from each other.
2. Read Committed – This isolation level guarantees that any data read is committed atthe moment it is read.
Thus it does not allows dirty read. The transaction holds a read orwrite lock on the current row, and thus
prevent other transactions from reading,updating or deleting it.
3. Repeatable Read – This is the most restrictive isolation level. The transaction holdsead locks on all rows
it references and writes locks on all rows it inserts, updates.deletes. Since other transaction cannot read,
update or delete these rows, consequently it
avoids non-repeatable read.
4. Serializable – This is the Highest isolation level. A serializable execution is guaranteed to be serializable.
Serializable execution is defined to be an execution of operations in which concurrently executing
transactions appears to be serially executing.

FAILURE CLASSIFICATION:
To find that where the problem has occurred, we generalize a failure into the following categories:
1. Transaction failure
2. System crash
3. Disk failure

1. Transaction failure:

 The transaction failure occurs when it fails to execute or when it reaches a point from where it can’t
go any further. If a few transactions or process is hurt, then this is called as transaction failure.

 Reasons for a transaction failure could be –

1. Logical errors: If a transaction cannot complete due to some code error or an internal error condition, then
the logical error occurs.

2. Syntax error: It occurs where the DBMS itself terminates an active transaction because the database
system is not able to execute it. For example, The system aborts an active transaction, in case of deadlock or
resource unavailability.

2. System Crash:

 System failure can occur due to power failure or other hardware or software failure. Example:
Operating system error.

Fail-stop assumption: In the system crash, non-volatile storage is assumed not to be corrupted.

3. Disk Failure:

 It occurs where hard-disk drives or storage drives used to fail frequently. It was a common problem
in the early days of technology evolution.

 Disk failure occurs due to the formation of bad sectors, disk head crash, and unreachability to the disk
or any other failure, which destroy all or part of disk storage.

Serializability:

It is an important aspect of Transactions. In simple meaning, you can say that serializability is a way to check
whether two transactions working on a database are maintaining database consistency or not.

It is of two types:

1. Conflict Serializability

2. View Serializability

Schedule

Schedule, as the name suggests is a process of lining the transactions and executing them one by one. When
there are multiple transactions that are running in a concurrent manner and the order of operation is needed to
be set so that the operations do not overlap each other, Scheduling is brought into play and the transactions
are timed accordingly.

It is of two types:

1. Serial Schedule

2. Non-Serial Schedule

Uses of Transaction Management

 The DBMS is used to schedule the access of data concurrently. It means that the user can access
multiple data from the database without being interfered with by each other. Transactions are used to
manage concurrency.

 It is also used to satisfy ACID properties.

 It is used to solve Read/Write Conflicts.

 It is used to implement Recoverability, Serializability, and Cascading.

 Transaction Management is also used for Concurrency Control Protocols and the Locking of data.

Disadvantages of using a Transaction

 It may be difficult to change the information within the transaction database by end-users.

 We need to always roll back and start from the beginning rather than continue from the previous state

Storage Management:

A database system provides an ultimate view of the stored data. However, data in the form of bits, bytes get
stored in different storage devices.

In this section, we will take an overview of various types of storage devices that are used for accessing and
storing data.

Types of Data Storage

For storing the data, there are different types of storage options available. These storage types differ from one
another as per the speed and accessibility. There are the following types of storage devices used for storing
the data:

o Primary Storage

o Secondary Storage

o Tertiary Storage

Primary Storage

It is the primary area that offers quick access to the stored data. We also know the primary storage as volatile
storage. It is because this type of memory does not permanently store the data. As soon as the system leads to
a power cut or a crash, the data also get lost. Main memory and cache are the types of primary storage.

 Main Memory: It is the one that is responsible for operating the data that is available by the storage
medium. The main memory handles each instruction of a computer machine. This type of memory can store
gigabytes of data on a system but is small enough to carry the entire database. At last, the main memory loses
the whole content if the system shuts down because of power failure or other reasons.

1. Cache: It is one of the costly storage media. On the other hand, it is the fastest one. A cache is a tiny
storage media which is maintained by the computer hardware usually. While designing the algorithms
and query processors for the data structures, the designers keep concern on the cache effects.

Secondary Storage

Secondary storage is also called as Online storage. It is the storage area that allows the user to save and store
data permanently. This type of memory does not lose the data due to any power failure or system crash.
That's why we also call it non-volatile storage.

There are some commonly described secondary storage media which are available in almost every type of
computer system:

o Flash Memory: A flash memory stores data in USB (Universal Serial Bus) keys which are further
plugged into the USB slots of a computer system. These USB keys help transfer data to a computer
system, but it varies in size limits. Unlike the main memory, it is possible to get back the stored data
which may be lost due to a power cut or other reasons. This type of memory storage is most
commonly used in the server systems for caching the frequently used data. This leads the systems
towards high performance and is capable of storing large amounts of databases than the main
memory.

o Magnetic Disk Storage: This type of storage media is also known as online storage media. A
magnetic disk is used for storing the data for a long time. It is capable of storing an entire database. It
is the responsibility of the computer system to make availability of the data from a disk to the main
memory for further accessing. Also, if the system performs any operation over the data, the modified
data should be written back to the disk. The tremendous capability of a magnetic disk is that it does
not affect the data due to a system crash or failure, but a disk failure can easily ruin as well as destroy
the stored data.

Tertiary Storage

It is the storage type that is external from the computer system. It has the slowest speed. But it is capable of
storing a large amount of data. It is also known as Offline storage. Tertiary storage is generally used for data
backup. There are following tertiary storage devices available:

o Optical Storage: An optical storage can store megabytes or gigabytes of data. A Compact Disk (CD)
can store 700 megabytes of data with a playtime of around 80 minutes. On the other hand, a Digital
Video Disk or a DVD can store 4.7 or 8.5 gigabytes of data on each side of the disk.

o Tape Storage: It is the cheapest storage medium than disks. Generally, tapes are used for archiving
or backing up the data. It provides slow access to data as it accesses data sequentially from the start.
Thus, tape storage is also known as sequential-access storage. Disk storage is known as direct-access
storage as we can directly access the data from any location on disk.

Storage Hierarchy

Besides the above, various other storage devices reside in the computer system. These storage media are
organized on the basis of data accessing speed, cost per unit of data to buy the medium, and by medium's
reliability. Thus, we can create a hierarchy of storage media on the basis of its cost and speed.

Thus, on arranging the above-described storage media in a hierarchy according to its speed and cost, we
conclude the below-described image:

In the image, the higher levels are expensive but fast. On moving down, the cost per bit is decreasing, and the
access time is increasing. Also, the storage media from the main memory to up represents the volatile nature,
and below the main memory, all are non-volatile devices.

DATABASE ADMINISTRATOR:

A database administrator (DBA) is a person or group in charge of implementing DBMS in an
organization. The DBA job requires a high degree of technical expertise. DBA consists of a team of people
rather than just one person.

The primary role of Database administrator is as follows −

 Database design

 Performance issues

 Database accessibility

 Capacity issues

 Data replication

 Table Maintenance

Responsibilities of DBA

The responsibilities of DBA are as follows −

 Makes the decision concerning the content of the database.

 Plans the storage structure and access strategy.

 Provides the support to the users.

 Defines the security and integrity checks.

 Interpreter backup and recovery strategies.

 Monitoring the performance and responding to the changes in the requirements.

Skills required for DBA

The skills required to be a successful DBA are as follows −

 Database designing.

 Knowledge of Structured Query Language (SQL).

 Know about distributed architecture.

 Knowledge on different operating servers.

 Idea on Relational Database Management System (RDBMS).

 Ready to face challenges and solve the problems quickly.

The role of DBA is as shown below −

Types of Database Administrator (DBA) :

 Administrative DBA –
Their job is to maintain the server and keep it functional. They are concerned with data backups,
security, troubleshooting, replication, migration, etc.

 Data Warehouse DBA –
Assigned earlier roles, but held accountable for merging data from various sources into the data
warehouse. They also design the warehouse, with cleaning and scrubs data prior to loading.

 Cloud DBA –
Nowadays companies are preferring to save their workpiece on cloud storage. As it reduces the
chance of data loss and provides an extra layer of data security and integrity.

 Development DBA –
They build and develop queries, stores procedure, etc. that meets firm or organization needs. They are
par at programming.

 Application DBA –
They particularly manage all requirements of application components that interact with the database
and accomplish activities such as application installation and coordination, application upgrades,
database cloning, data load process management, etc.

 Architect –
They are held responsible for designing schemas like building tables. They work to build a structure
that meets organizational needs. The design is further used by developers and development DBAs to
design and implement real applications.

 OLAP DBA –
They design and build multi-dimensional cubes for determination support or OLAP systems.

 Data Modeler –
In general, a data modeler is in charge of a portion of a data architect’s duties. A data modeler is
typically not regarded as a DBA, but this is not a hard and fast rule.

 Task-Oriented DBA –
To concentrate on a specific DBA task, large businesses may hire highly specialised DBAs. They are
quite uncommon outside of big corporations. Recovery and backup DBA, whose responsibility it is to
guarantee that the databases of businesses can be recovered, is an example of a task-oriented DBA.

However, this specialism is not present in the majority of firms. These task-oriented DBAs will make
sure that highly qualified professionals are working on crucial DBA tasks when it is possible.

 Database Analyst –
This position doesn’t actually have a set definition. Junior DBAs may occasionally be referred to as
database analysts. A database analyst occasionally performs functions that are comparable to those of
a database architect. The term “Data Administrator” is also used to describe database analysts and
data analysts. Additionally, some businesses occasionally refer to database administrators as data
analysts.

DATABASE ADMINISTRATORS:

 Database users are categorized based up on their interaction with the database. These are seven types
of database users in DBMS.

1. Database Administrator (DBA) : Database Administrator (DBA) is a person/team who defines the
schema and also controls the 3 levels of database. The DBA will then create a new account id and
password for the user if he/she need to access the database. DBA is also responsible for providing
security to the database and he allows only the authorized users to access/modify the data base. DBA
is responsible for the problems such as security breaches and poor system response time.

 DBA also monitors the recovery and backup and provide technical support.

 The DBA has a DBA account in the DBMS which called a system or superuser account.

 DBA repairs damage caused due to hardware and/or software failures.

 DBA is the one having privileges to perform DCL (Data Control Language) operations such
as GRANT and REVOKE, to allow/restrict a particular user from accessing the database.

2. Naive / Parametric End Users : Parametric End Users are the unsophisticated who don’t have any
DBMS knowledge but they frequently use the database applications in their daily life to get the desired
results. For examples, Railway’s ticket booking users are naive users. Clerks in any bank is a naive user
because they don’t have any DBMS knowledge but they still use the database and perform their given
task.

3. System Analyst :
System Analyst is a user who analyzes the requirements of parametric end users. They check whether
all the requirements of end users are satisfied.

4. Sophisticated Users : Sophisticated users can be engineers, scientists, business analyst, who are
familiar with the database. They can develop their own database applications according to their
requirement. They don’t write the program code but they interact the database by writing SQL queries
directly through the query processor.

5. Database Designers : Data Base Designers are the users who design the structure of database which
includes tables, indexes, views, triggers, stored procedures and constraints which are usually enforced
before the database is created or populated with data. He/she controls what data must be stored and how
the data items to be related. It is responsibility of Database Designers to understand the requirements
of different user groups and then create a design which satisfies the need of all the user groups.

6. Application Programmers : Application Programmers also referred as System Analysts or simply
Software Engineers, are the back-end programmers who writes the code for the application programs.
They are the computer professionals. These programs could be written in Programming languages such
as Visual Basic, Developer, C, FORTRAN, COBOL etc. Application programmers design, debug, test,

and maintain set of programs called “canned transactions” for the Naive (parametric) users in order to
interact with database.

7. Casual Users / Temporary Users : Casual Users are the users who occasionally use/access the
database but each time when they access the database they require the new information, for example,
Middle or higher level manager.

8. Specialized users : Specialized users are sophisticated users who write
specialized database application that does not fit into the traditional data-
processing framework. Among these applications are computer aided-design
systems, knowledge-base and expert systems etc.

Structure of DBMS

DBMS means Database Management System, which is a tool or software used to create the database or
delete or manipulate the database. A software programme created to store, retrieve, query, and manage data is
known as a Database Management System (DBMS). Data can be generated, read, updated, and destroyed by
authorized entities thanks to user interfaces (UIs).

Because they give programmers, Database Managers, and end users a consolidated view of the data, Database
Management Systems are crucial because they relieve applications and end users of the need to comprehend
the physical location of the data. Application Programme Interfaces (APIs) manage internet requests and
responses for particular sorts of data.

In marketing materials, the phrase "database as a service" (DBaaS) may be used to refer to both relational and
non-relational DBMS components that are given via the internet. Users of DBMSs include application
programmers, Database Administrators (DBAs), and end users.

 Database Administrators are typically the only people who work directly with a DBMS. Today, end users read
and write to databases using front-end interfaces made by programmers, while programmers use cloud APIs to
connect with DBMSs.

Three Parts that make up the Database System are:

o Query Processor

o Storage Manager

o Disk Storage

The explanations for these are provided below:

1. Query Processor

The query processing is handled by the query processor, as the name implies. It executes the user's query, to
put it simply. In this way, the query processor aids the database system in making data access simple and
easy. The query processor's primary duty is to successfully execute the query. The Query Processor
transforms (or interprets) the user's application program-provided requests into instructions that a computer
can understand.

Components of the Query Processor

o DDL Interpreter:

Data Definition Language is what DDL stands for. As implied by the name, the DDL Interpreter interprets
DDL statements like those used in schema definitions (such as create, remove, etc.). This interpretation yields
a set of tables that include the meta-data (data of data) that is kept in the data dictionary. Metadata may be
stored in a data dictionary. In essence, it is a part of the disc storage that will be covered in a later section of
this article.

o DML Compiler:

Compiler for DML Data Manipulation Language is what DML stands for. In keeping with its name, the DML
Compiler converts DML statements like select, update, and delete into low-level instructions or simply
machine-readable object code, to enable execution. The optimization of queries is another function of the
DML compiler. Since a single question can typically be translated into a number of evaluation plans. As a
result, some optimization is needed to select the evaluation plan with the lowest cost out of all the options.
This process, known as query optimization, is exclusively carried out by the DML compiler. Simply put,
query optimization determines the most effective technique to carry out a query.

o Embedded DML Pre-compiler:

Before the query evaluation, the embedded DML commands in the application program (such as SELECT,
FROM, etc., in SQL) must be pre-compiled into standard procedural calls (program instructions that the host
language can understand). Therefore, the DML statements which are embedded in an application program
must be converted into routine calls by the Embedded DML Pre-compiler.

o Query Optimizer:

It starts by taking the evaluation plan for the question, runs it, and then returns the result. Simply said, the
query evaluation engine evaluates the SQL commands used to access the database's contents before returning
the result of the query. In a nutshell, it is in charge of analyzing the queries and running the object code that
the DML Compiler produces. Apache Drill, Presto, and other Query Evaluation Engines are a few examples.

2. Storage Manager:

An application called Storage Manager acts as a conduit between the queries made and the data kept in the
database. Another name for it is Database Control System. By applying the restrictions and running the DCL
instructions, it keeps the database's consistency and integrity. It is in charge of retrieving, storing, updating,
and removing data from the database.

Components of Storage Manager

Following are the components of Storage Manager:

o Integrity Manager:

Whenever there is any change in the database, the Integrity manager will manage the integrity constraints.

o Authorization Manager:

Authorization manager verifies the user that he is valid and authenticated for the specific query or request.

o File Manager:

All the files and data structure of the database are managed by this component.

o Transaction Manager:

It is responsible for making the database consistent before and after the transactions. Concurrent processes
are generally controlled by this component.

o Buffer Manager:

The transfer of data between primary and main memory and managing the cache memory is done by the
buffer manager.

3. Disk Storage

A DBMS can use various kinds of Data Structures as a part of physical system implementation in the form of
disk storage.

Components of Disk Storage

Following are the components of Disk Manager:

o Data Dictionary:

It contains the metadata (data of data), which means each object of the database has some information about
its structure. So, it creates a repository which contains the details about the structure of the database object.

o Data Files:

This component stores the data in the files.

o Indices:

These indices are used to access and retrieve the data in a very fast and efficient way

UNIT II

INTRODUCTION:

 ER (Entity Relationship) Diagram in DBMS

o ER model stands for an Entity-Relationship model. It is a high-level data model. This model is used to
define the data elements and relationship for a specified system.

o It develops a conceptual design for the database. It also develops a very simple and easy to design view
of data.

o In ER modeling, the database structure is portrayed as a diagram called an entity-relationship diagram.

For example, Suppose we design a school database. In this database, the student will be an entity with
attributes like address, name, id, age, etc. The address can be another entity with attributes like city, street
name, pin code, etc and there will be a relationship between them.

Uses of ER Diagrams in DBMS:

 ER diagrams are used to represent the E-R model in a database, which makes them easy to be converted
into relations (tables).

 ER diagrams provide the purpose of real-world modeling of objects which makes them intently useful.

 ER diagrams require no technical knowledge and no hardware support.

 These diagrams are very easy to understand and easy to create even for a naive user.

 It gives a standard solution for visualizing the data logically.

Symbols Used in ER Model

ER Model is used to model the logical view of the system from a data perspective which consists of these
symbols:

 Rectangles: Rectangles represent Entities in ER Model.

 Ellipses: Ellipses represent Attributes in ER Model.

 Diamond: Diamonds represent Relationships among Entities.

 Lines: Lines represent attributes to entities and entity sets with other relationship types.

 Double Ellipse: Double Ellipses represent Multi-Valued Attributes.

 Double Rectangle: Double Rectangle represents a Weak Entity.

Symbols used in ER Diagram

Basic Concepts of ER Diagram

1. Entity:

An entity may be any object, class, person or place. In the ER diagram, an entity can be represented as
rectangles.

Consider an organization as an example- manager, product, employee, department etc. can be taken as an entity.

a. Weak Entity

An entity that depends on another entity called a weak entity. The weak entity doesn't contain any key attribute
of its own. The weak entity is represented by a double rectangle.

2. Attribute

The attribute is used to describe the property of an entity. Eclipse is used to represent an attribute.

For example, id, age, contact number, name, etc. can be attributes of a student.

a. Key Attribute

The key attribute is used to represent the main characteristics of an entity. It represents a primary key. The key
attribute is represented by an ellipse with the text underlined.

b. Composite Attribute

An attribute that composed of many other attributes is known as a composite attribute. The composite attribute
is represented by an ellipse, and those ellipses are connected with an ellipse.

c. Multivalued Attribute

An attribute can have more than one value. These attributes are known as a multivalued attribute. The double
oval is used to represent multivalued attribute.

For example, a student can have more than one phone number.

d. Derived Attribute

An attribute that can be derived from other attribute is known as a derived attribute. It can be represented by a
dashed ellipse.

For example, A person's age changes over time and can be derived from another attribute like Date of birth.

3. Relationship

A relationship is used to describe the relation between entities. Diamond or rhombus is used to represent the
relationship.

Types of relationship are as follows:

a. One-to-One Relationship

When only one instance of an entity is associated with the relationship, then it is known as one to one
relationship.

For example, A female can marry to one male, and a male can marry to one female.

b. One-to-many relationship

When only one instance of the entity on the left, and more than one instance of an entity on the right associates
with the relationship then this is known as a one-to-many relationship.

For example, Scientist can invent many inventions, but the invention is done by the only specific scientist.

c. Many-to-one relationship

When more than one instance of the entity on the left, and only one instance of an entity on the right associates
with the relationship then it is known as a many-to-one relationship.

For example, Student enrolls for only one course, but a course can have many students.

d. Many-to-many relationship

When more than one instance of the entity on the left, and more than one instance of an entity on the right
associates with the relationship then it is known as a many-to-many relationship.

For example, Employee can assign by many projects and project can have many employees.

Notation of ER diagram

Database can be represented using the notations. In ER diagram, many notations are used to express
the cardinality. These notations are as follows:

Fig: Notations of ER diagram

Design Issues

 1) Use of Entity Set vs Attributes

The use of an entity set or attribute depends on the structure of the real-world enterprise that is being
modelled and the semantics associated with its attributes. It leads to a mistake when the user use the primary
key of an entity set as an attribute of another entity set. Instead, he should use the relationship to do so. Also,
the primary key attributes are implicit in the relationship set, but we designate it in the relationship sets.

2) Use of Entity Set vs. Relationship Sets

It is difficult to examine if an object can be best expressed by an entity set or relationship set. To understand
and determine the right use, the user need to designate a relationship set for describing an action that occurs
in-between the entities. If there is a requirement of representing the object as a relationship set, then its better
not to mix it with the entity set.

3) Use of Binary vs n-ary Relationship Sets

Generally, the relationships described in the databases are binary relationships. However, non-binary
relationships can be represented by several binary relationships. For example, we can create and represent a
ternary relationship 'parent' that may relate to a child, his father, as well as his mother. Such relationship can
also be represented by two binary relationships i.e, mother and father, that may relate to their child. Thus, it is
possible to represent a non-binary relationship by a set of distinct binary relationships.

4) Placing Relationship Attributes

The cardinality ratios can become an affective measure in the placement of the relationship attributes. So, it is
better to associate the attributes of one-to-one or one-to-many relationship sets with any participating entity
sets, instead of any relationship set. The decision of placing the specified attribute as a relationship or entity
attribute should possess the charactestics of the real world enterprise that is being modelled.

For example, if there is an entity which can be determined by the combination of participating entity sets,
instead of determing it as a separate entity. Such type of attribute must be associated with the many-to-many
relationship sets.

Thus, it requires the overall knowledge of each part that is involved inb desgining and modelling an ER
diagram. The basic requirement is to analyse the real-world enterprise and the connectivity of one entity or
attribute with other.

Mapping Cardinalities:

DBMS

DBMS stands for Database Management System, which is a tool, or a software used to do various
operations on a Database like the Creation of the Database, Deletion of the Database, or Updating the current
Database. To simplify processing and data querying, the most popular types of Databases currently in use
typically model their data as rows and columns in a set of tables. The data may then be handled, updated,
regulated, and structured with ease. For writing and querying data, most Databases employ Structured Query
Language (SQL).

Cardinality

Cardinality means how the entities are arranged to each other or what is the relationship structure between
entities in a relationship set. In a Database Management System, Cardinality represents a number that denotes
how many times an entity is participating with another entity in a relationship set. The Cardinality of DBMS
is a very important attribute in representing the structure of a Database. In a table, the number of rows or
tuples represents the Cardinality.

Cardinality Ratio

Cardinality ratio is also called Cardinality Mapping, which represents the mapping of one entity set
to another entity set in a relationship set. We generally take the example of a binary relationship set where
two entities are mapped to each other.

Cardinality is very important in the Database of various businesses. For example, if we want to track
the purchase history of each customer then we can use the one-to-many cardinality to find the data of a
specific customer. The Cardinality model can be used in Databases by Database Managers for a variety of
purposes, but corporations often use it to evaluate customer or inventory data.

 There are four types of Cardinality Mapping in Database Management Systems:

1. One to one

2. Many to one

3. One to many

4. Many to many

One to One

One to one cardinality is represented by a 1:1 symbol. In this, there is at most one relationship from one
entity to another entity. There are a lot of examples of one-to-one cardinality in real life databases.

For example, one student can have only one student id, and one student id can belong to only one student.
So, the relationship mapping between student and student id will be one to one cardinality mapping.

Another example is the relationship between the director of the school and the school because one school can
have a maximum of one director, and one director can belong to only one school.

Note: it is not necessary that there would be a mapping for all entities in an entity set in one-to-one
cardinality. Some entities cannot participate in the mapping.

Many to One Cardinality:

In many to one cardinality mapping, from set 1, there can be multiple sets that can make relationships with a
single entity of set 2. Or we can also describe it as from set 2, and one entity can make a relationship with
more than one entity of set 1.

One to one Cardinality is the subset of Many to one Cardinality. It can be represented by M:1.

For example, there are multiple patients in a hospital who are served by a single doctor, so the relationship
between patients and doctors can be represented by Many to one Cardinality.

One to Many Cardinalities:

In One-to-many cardinality mapping, from set 1, there can be a maximum single set that can make
relationships with a single or more than one entity of set 2. Or we can also describe it as from set 2, more
than one entity can make a relationship with only one entity of set 1.

One to one cardinality is the subset of One-to-many Cardinality. It can be represented by 1: M.

For Example, in a hospital, there can be various compounders, so the relationship between the hospital and
compounders can be mapped through One-to-many Cardinality.

Many to Many Cardinalities:

In many, many cardinalities mapping, there can be one or more than one entity that can associate with one or
more than one entity of set 2. In the same way from the end of set 2, one or more than one entity can make a
relation with one or more than one entity of set 1.

It is represented by M: N or N: M.

One to one cardinality, One to many cardinalities, and Many to one cardinality is the subset of the many to
many cardinalities.

For Example, in a college, multiple students can work on a single project, and a single student can also work
on multiple projects. So, the relationship between the project and the student can be represented by many to
many cardinalities.

Appropriate Mapping Cardinality

Evidently, the real-world context in which the relation set is modeled determines the Appropriate Mapping
Cardinality for a specific relation set.

o We can combine relational tables with many involved tables if the Cardinality is one-to-many or
many-to-one.

o One entity can be combined with a relation table if it has a one-to-one relationship and total
participation, and two entities can be combined with their relation to form a single table if both of
them have total participation.

o We cannot mix any two tables if the Cardinality is many-to-many.

Keys

o Keys play an important role in the relational database.

o It is used to uniquely identify any record or row of data from the table. It is also used to establish and
identify relationships between tables.

For example, ID is used as a key in the Student table because it is unique for each student. In the PERSON
table, passport_number, license_number, SSN are keys since they are unique for each person.

Types of keys:

1. Primary key

o It is the first key used to identify one and only one instance of an entity uniquely. An entity can
contain multiple keys, as we saw in the PERSON table. The key which is most suitable from those
lists becomes a primary key.

o In the EMPLOYEE table, ID can be the primary key since it is unique for each employee. In the
EMPLOYEE table, we can even select License_Number and Passport_Number as primary keys since
they are also unique.

o For each entity, the primary key selection is based on requirements and developers.

2. Candidate key

o A candidate key is an attribute or set of attributes that can uniquely identify a tuple.

o Except for the primary key, the remaining attributes are considered a candidate key. The candidate
keys are as strong as the primary key.

For example: In the EMPLOYEE table, id is best suited for the primary key. The rest of the attributes, like
SSN, Passport_Number, License_Number, etc., are considered a candidate key.

3. Super Key

Super key is an attribute set that can uniquely identify a tuple. A super key is a superset of a candidate key.

For example: In the above EMPLOYEE table, for(EMPLOEE_ID, EMPLOYEE_NAME), the name of two
employees can be the same, but their EMPLYEE_ID can't be the same. Hence, this combination can also be a
key.

 4. Foreign key

o Foreign keys are the column of the table used to point to the primary key of another table.

o Every employee works in a specific department in a company, and employee and department are two
different entities. So we can't store the department's information in the employee table. That's why we
link these two tables through the primary key of one table.

o We add the primary key of the DEPARTMENT table, Department_Id, as a new attribute in the
EMPLOYEE table.

o In the EMPLOYEE table, Department_Id is the foreign key, and both the tables are related.

5. Alternate key

There may be one or more attributes or a combination of attributes that uniquely identify each tuple in
a relation. These attributes or combinations of the attributes are called the candidate keys. One key is chosen
as the primary key from these candidate keys, and the remaining candidate key, if it exists, is termed the
alternate key. In other words, the total number of the alternate keys is the total number of candidate keys
minus the primary key. The alternate key may or may not exist. If there is only one candidate key in a
relation, it does not have an alternate key.

For example, employee relation has two attributes, Employee_Id and PAN_No, that act as candidate
keys. In this relation, Employee_Id is chosen as the primary key, so the other candidate key, PAN_No, acts as
the Alternate key.

6. Composite key

Whenever a primary key consists of more than one attribute, it is known as a composite key. This key is also
known as Concatenated Key.

For example, in employee relations, we assume that an employee may be assigned multiple roles, and an
employee may work on multiple projects simultaneously. So the primary key will be composed of all three
attributes, namely Emp_ID, Emp_role, and Proj_ID in combination. So these attributes act as a composite
key since the primary key comprises more than one attribute.

7. Artificial key

The key created using arbitrarily assigned data are known as artificial keys. These keys are created when a
primary key is large and complex and has no relationship with many other relations. The data values of the
artificial keys are usually numbered in a serial order.

For example, the primary key, which is composed of Emp_ID, Emp_role, and Proj_ID, is large in employee
relations. So it would be better to add a new virtual attribute to identify each tuple in the relation uniquely.

ER DIAGRAMS:

 The very first step is identifying all the Entities, and place them in a Rectangle, and labeling them
accordingly.

 The next step is to identify the relationship between them and pace them accordingly using the
Diamond, and make sure that, Relationships are not connected to each other.

 Attach attributes to the entities properly.

 Remove redundant entities and relationships.

 Add proper colors to highlight the data present in the database.

Weak Entity Set in ER diagrams

An entity type should have a key attribute which uniquely identifies each entity in the entity set, but
there exists some entity type for which key attribute can’t be defined. These are called Weak Entity type. The
entity sets which do not have sufficient attributes to form a primary key are known as weak entity sets and
the entity sets which have a primary key are known as strong entity sets.

As the weak entities do not have any primary key, they cannot be identified on their own, so they
depend on some other entity (known as owner entity). The weak entities have total participation
constraint (existence dependency) in its identifying relationship with owner identity. Weak entity types have
partial keys. Partial Keys are set of attributes with the help of which the tuples of the weak entities can be
distinguished and identified.

Note – Weak entity always has total participation but Strong entity may not have total
participation. Weak entity is depend on strong entity to ensure the existence of weak entity. Like strong
entity, weak entity does not have any primary key, It has partial discriminator key. Weak entity is represented
by double rectangle. The relation between one strong and one weak entity is represented by double diamond.

Weak entities are represented with double rectangular box in the ER Diagram and the identifying
relationships are represented with double diamond. Partial Key attributes are represented with dotted lines.

Example-1:
In the below ER Diagram, ‘Payment’ is the weak entity. ‘Loan Payment’ is the identifying relationship and
‘Payment Number’ is the partial key. Primary Key of the Loan along with the partial key would be used to
identify the records.

Example-2:
The existence of rooms is entirely dependent on the existence of a hotel. So room can be seen as the weak
entity of the hotel.

Example-3:
The bank account of a particular bank has no existence if the bank doesn’t exist anymore.

Example-4:
A company may store the information of dependents (Parents, Children, Spouse) of an Employee. But the
dependents don’t have existence without the employee. So Dependent will be weak entity type and Employee
will be Identifying Entity type for Dependent.

Other examples:

Strong entity | Weak entity

Order | Order Item

Employee | Dependent

Class | Section

Host | Logins

Note – Strong-Weak entity set always has parent-child relationship.

Extended E-R Features

 It is getting harder and harder to apply the conventional ER paradigm for database modeling as data complexity
rises today. The existing ER model needs to be enhanced or improved in order for it to better handle the
complicated application in order to reduce the modeling complexity.

The requirements and complexity of complicated databases are represented using enhanced entity-
relationship diagrams, which are sophisticated database diagrams very similar to standard ER diagrams.

The SubClass and SuperClass, Specialization and Generalization, Union or Category, Aggregation, etc., are
displayed using this diagrammatic style.

 Generalization and Specialization

These are two normal kinds of relationships that were added to the normal ER model for
enhancement. These are inspired by the object-oriented paradigm, where we divide the code into classes and
objects, and in the same way, we have divided entities into subclass and superclasses. Specialized classes are
called subclasses, and generalized classes are called superclasses or base classes. We can learn the concept of
subclass by 'IS-A' analysis. For example, 'Laptop IS-A computer.' Or 'Clerk IS-A employee.'

In this relationship, one entity is a subclass or superclass of another entity. For example, in a
university, a faculty member or clerk is a specialized class of employees. So an employee is a generalized
class, and all others are its subclass.

We can draw the ER diagram for these relationships. Let's suppose we have a superclass Employee and
subclasses as a clerk, engineer, and lab assistant.

The Extended ER diagram of the above example will look like this:

In the above example, we have one superclass and three subclasses. Each subclass inherits all the attributes
from its superclass so that a lab assistant will have all its attributes, like its name, salary, etc.

Constraints

There are two types of constraints on subclasses which are described below:

o Total or Partial:

A total subclass relationship is one where the union of all the subclasses is equal to the superclass. It means if
every superclass entity has some subclass entity, then it is called a total subclass relationship. Let's suppose if
the union of all the subclasses (engineer, clerk, lab assistant) is equal to the total employee. Then the
relationship is total. In the above example, it is a total relationship.

If all the entities of a superclass are not associated with a subclass, then it is called a partial subclass
relationship.

o Overlapped or Disjoint:

If any entity from the superclass is associated with more than one subclass, then it is known as overlapped
subclassing, and if it is associated with zero or only one subclass, then it is called disjoint subclassing.

Note: The above two constraints are independent of each other, and they follow the transitive property.

Multiple Inheritance

When one subclass is associated with more than one superclass, then this phenomenon is known as
multiple inheritance. In multiple inheritance, the attributes of the subclass will be the union of all the
superclass attributes which are associated with it. For example, a teacher is a subclass that can be associated
with the superclass of an employee and a superclass of faculty. In the same way, a monitor in the class can be
a subclass of a student superclass as well as an alumni superclass.

UNION

UNION is a different topic from subclassing. Let's suppose we have a vehicle superclass, and we have
two subclasses, car and bike. These two subclasses will inherit the attributes from the vehicle superclass.
Now we have a UNION of those vehicles which are RTO registered, so we have a UNION of cars and bikes,
but they will inherit all the attributes from the vehicle superclass.

Design of an ER Database Schema:

o The data which is stored in the database at a particular moment of time is called an instance of the
database.

o The Overall design of a database is called schema.
o A database schema is the skeleton structure of the database. It represents the logical view of the entire

database.
o A Schema contains schema objects like table, foreign key, primary key, views, columns, data types,

stored procedure, etc.,
o A database schema can be represented by using the visual diagram. That diagram shows the database

objects and relationship with each other.
o A database schema is designed schema is designed by the database designers to help programmers

whose software will interact with the database. The process of database creation is called data
modelling

The schema diagram can display only some aspects of a schema like the name of record type, data type and
constraints. Other aspects can’t be specified through the schema diagram. For example, the given figure
neither show the data type of each data item nor the relationship among various file.

In the database, actual data changes quite frequently. For example, in the given figure, the database changes
whenever we add a new grade or add a student. The data at a particular moment of time is called the instance
of the database.

Reduction of ER diagram to Table

The database can be represented using the notations, and these notations can be reduced to a collection of
tables. In the database, every entity set or relationship set can be represented in tabular form.

The ER diagram is given below:

There are some points for converting the ER diagram to the table:

o Entity type becomes a table.

In the given ER diagram, LECTURE, STUDENT, SUBJECT and COURSE forms individual tables.

o All single-valued attribute becomes a column for the table.

In the STUDENT entity, STUDENT_NAME and STUDENT_ID form the column of STUDENT table.
Similarly, COURSE_NAME and COURSE_ID form the column of COURSE table and so on.

o A key attribute of the entity type represented by the primary key.

In the given ER diagram, COURSE_ID, STUDENT_ID, SUBJECT_ID, and LECTURE_ID are the key
attribute of the entity.

o The multivalued attribute is represented by a separate table.

In the student table, a hobby is a multivalued attribute. So it is not possible to represent multiple values in a
single column of STUDENT table. Hence we create a table STUD_HOBBY with column name
STUDENT_ID and HOBBY. Using both the column, we create a composite key.

o Composite attribute represented by components.

In the given ER diagram, student address is a composite attribute. It contains CITY, PIN, DOOR#, STREET,
and STATE. In the STUDENT table, these attributes can merge as an individual column.

o Derived attributes are not considered in the table.

In the STUDENT table, Age is the derived attribute. It can be calculated at any point of time by calculating
the difference between current date and Date of Birth.

Using these rules, you can convert the ER diagram to tables and columns and assign the mapping between the
tables. Table structure for the given ER diagram is as below:

Figure: Table structure

UNIT III

Relational Model in DBMS

Relational model can represent as a table with columns and rows. Each row is known as a tuple. Each table of
the column has a name or attribute.

Domain: It contains a set of atomic values that an attribute can take.

Attribute: It contains the name of a column in a particular table. Each attribute Ai must have a domain,
dom(Ai)

Relational instance: In the relational database system, the relational instance is represented by a finite set of
tuples. Relation instances do not have duplicate tuples.

 Relational schema: A relational schema contains the name of the relation and name of all columns or
attributes.

Relational key: In the relational key, each row has one or more attributes. It can identify the row in the relation
uniquely.

Example: STUDENT Relation

NAME ROLL_NO PHONE_NO ADDRESS AGE

Ram 14795 7305758992 Noida 24

Shyam 12839 9026288936 Delhi 35

Laxman 33289 8583287182 Gurugram 20

Mahesh 27857 7086819134 Ghaziabad 27

Ganesh 17282 9028 9i3988 Delhi 40

o In the given table, NAME, ROLL_NO, PHONE_NO, ADDRESS, and AGE are the attributes.

o The instance of schema STUDENT has 5 tuples.

o t3 = <Laxman, 33289, 8583287182, Gurugram, 20>

Properties of Relations

o Name of the relation is distinct from all other relations.

o Each relation cell contains exactly one atomic (single) value

o Each attribute contains a distinct name

o Attribute domain has no significance

o tuple has no duplicate value

o Order of tuple can have a different sequence

Structure of Relational Model:

A relational database consists of a collection of tables, each of which is assigned a
unique name. For example, consider the instructor table of Figure 2.1, which stores

information about instructors. The table has four column headers: ID, name, dept_
name, and salary. Each row of this table records information about an instructor,
consisting of the instructor’s ID, name, dept_name, and salary. Similarly, the course
table of Figure 2.2 stores information about courses, consisting of a course_id, title,
dept_name, and credits, for each course. Note that each instructor is identified by
the value of the column ID, while each course is identified by the value of the
column course_id. Figure 2.3 shows a third table, prereq,which stores the prerequisite courses for
each course. The table has two columns, course_id and prereq_id. Each row consists
of a pair of course identifiers such that the second course is a prerequisite for the
first course.

Thus, a row in the prereq table indicates that two courses are related in the
sense that one course is a prerequisite for the other. As another example, we
consider the table instructor, a row in the table can be thought of as representing
the relationship between a specified ID and the corresponding values for name,
dept_name, and salary values.

In general, a row in a table represents a relationship among a set of values.
Since a table is a collection of such relationships, there is a close correspondence
between the concept of table and the mathematical concept of relation, fromwhich
the relational data model takes its name. In mathematical terminology, a tuple is
simply a sequence (or list) of values. A relationship between n values is represented
mathematically by an n-tuple of values, i.e., a tuple with n values, which
corresponds to a row in a table.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1,we can see that the relation instructor has four attributes:
ID, name, dept_name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1
has 12 tuples, corresponding to 12 instructors.

The order in which tuples appear in a relation is irrelevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in
the two figures are the same, since both contain the same set of tuples. For ease
of exposition, we will mostly show the relations sorted by their first attribute.

For each attribute of a relation, there is a set of permitted values, called the
domain of that attribute. Thus, the domain of the salary attribute of the instructor
relation is the set of all possible salary values, while the domain of the name
attribute is the set of all possible instructor names.

We require that, for all relations r, the domains of all attributes of r be atomic.
A domain is atomic if elements of the domain are considered to be indivisible
units. For example, suppose the table instructor had an attribute phone_number,
which can store a set of phone numbers corresponding to the instructor. Then the
domain of phone_number would not be atomic, since an element of the domain is a
set of phone numbers, and it has subparts, namely the individual phone numbers
in the set.

The important issue is not what the domain itself is, but rather how we use
domain elements in our database. Suppose now that the phone number attribute
stores a single phone_number. Even then, if we split the value from the phone
number attribute into a country code, an area code and a local number, we would
be treating it as a nonatomic value. If we treat each phone number as a single
indivisible unit, then the attribute phone_number would have an atomic domain.

The null value is a special value that signifies that the value is unknown or
does not exist. For example, suppose as before that we include the attribute phone_
number in the instructor relation. It may be that an instructor does not have a
phone number at all, or that the telephone number is unlisted. We would then
have to use the null value to signify that the value is unknown or does not exist.
We shall see later that null values cause a number of difficulties when we access
or update the database, and thus should be eliminated if at all possible.

Relational Algebra:

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the
query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

o The select operation selects tuples that satisfy a given predicate.

o It is denoted by sigma (σ).

1. Notation: σ p(r)

Where:

σ is used for selection prediction
r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and NOT. These
relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Downtown L-17 1000

Redwood L-23 2000

Perryride L-15 1500

Downtown L-14 1500

Mianus L-13 500

Roundhill L-11 900

Perryride L-16 1300

Input:

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME LOAN_NO AMOUNT

Perryride L-15 1500

Perryride L-16 1300

2. Project Operation:

o This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes
are eliminated from the table.

o It is denoted by ∏.

1. Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Hays Main Harrison

Curry North Rye

Johnson Alma Brooklyn

Brooks Senator Brooklyn

Input:

1. ∏ NAME, CITY (CUSTOMER)

Output:

NAME CITY

Jones Harrison

Smith Rye

Hays Harrison

Curry Rye

Johnson Brooklyn

Brooks Brooklyn

3. Union Operation:

o Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or
S or both in R & S.

o It eliminates the duplicate tuples. It is denoted by ∪.

1. Notation: R ∪ S

A union operation must hold the following condition:

o R and S must have the attribute of the same number.

o Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Johnson A-101

Smith A-121

Mayes A-321

Turner A-176

Johnson A-273

Jones A-472

Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17

Smith L-23

Hayes L-15

Jackson L-14

Curry L-93

Smith L-11

Williams L-17

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Johnson

Smith

Hayes

Turner

Jones

Lindsay

Jackson

Curry

Williams

Mayes

4. Set Intersection:

o Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both
R & S.

o It is denoted by intersection ∩.

1. Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

o Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but
not in S.

o It is denoted by intersection minus (-).

1. Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson

Hayes

Willians

Curry

6. Cartesian product

o The Cartesian product is used to combine each row in one table with each row in the other table. It is
also known as a cross product.

o It is denoted by X.

1. Notation: E X D

Example:

EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A

2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME
A Marketing
B Sales
C Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME
1 Smith A A Marketing
1 Smith A B Sales
1 Smith A C Legal
2 Harry C A Marketing
2 Harry C B Sales
2 Harry C C Legal
3 John B A Marketing
3 John B B Sales
3 John B C Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. ρ(STUDENT1, STUDENT)

Tuple Relational Calculus (TRC) in DBMS
Tuple Relational Calculus (TRC) is a non-procedural query language used in relational database

management systems (RDBMS) to retrieve data from tables. TRC is based on the concept of tuples, which are
ordered sets of attribute values that represent a single row or record in a database table.

TRC is a declarative language, meaning that it specifies what data is required from the database, rather than
how to retrieve it. TRC queries are expressed as logical formulas that describe the desired tuples.

Syntax: The basic syntax of TRC is as follows:

{ t | P(t) }

where t is a tuple variable and

P(t) is a logical formula that describes the conditions that the tuples in the result must satisfy.

The curly braces {} are used to indicate that the expression is a set of tuples.

For example, let’s say we have a table called “Employees” with the following attributes:

Employee ID
Name
Salary
Department ID

To retrieve the names of all employees who earn more than $50,000 per year, we can use the following TRC
query:

{ t | Employees(t) ∧ t.Salary > 50000 }

In this query, the “Employees(t)” expression specifies that the tuple variable t represents a row in the
“Employees” table. The “∧” symbol is the logical AND operator, which is used to combine the condition
“t.Salary > 50000” with the table selection. The result of this query will be a set of tuples, where each tuple
contains the Name attribute of an employee who earns more than $50,000 per year.

TRC can also be used to perform more complex queries, such as joins and nested queries, by using additional
logical operators and expressions. While TRC is a powerful query language, it can be more difficult to write
and understand than other SQL-based query languages, such as Structured Query Language (SQL). However,
it is useful in certain applications, such as in the formal verification of database schemas and in academic
research.

Tuple Relational Calculus is a non-procedural query language, unlike relational algebra. Tuple Calculus
provides only the description of the query but it does not provide the methods to solve it. Thus, it explains what
to do but not how to do it.

Tuple Relational Query

In Tuple Calculus, a query is expressed as

{t| P(t)}

where t = resulting tuples,
P(t) = known as Predicate and these are the conditions that are used to fetch t. Thus, it generates a set
of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).
It also uses quantifiers:
∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true.
∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.

Tuple Relational Calculus Examples

Table Customer

Customer name Street City

Saurabh A7 Patiala

Mehak B6 Jalandhar

Sumiti D9 Ludhiana

Ria A5 Patiala

Table Branch

Branch name Branch City

ABC Patiala

Branch name Branch City

DEF Ludhiana

GHI Jalandhar

Table Account

Account number Branch name Balance

1111 ABC 50000

1112 DEF 10000

1113 GHI 9000

1114 ABC 7000

Table Loan

Loan number Branch name Amount

L33 ABC 10000

L35 DEF 15000

L49 GHI 9000

L98 DEF 65000

Table Borrower

Customer name Loan number

Saurabh L33

Mehak L49

Customer name Loan number

Ria L98

Table Depositor

Customer name Account number

Saurabh 1111

Mehak 1113

Suniti 1114

Example 1: Find the loan number, branch, and amount of loans greater than or equal to 10000 amount.

{t| t ∈ loan ∧ t[amount]>=10000}

Resulting relation:

Loan number Branch name Amount

L33 ABC 10000

L35 DEF 15000

L98 DEF 65000

In the above query, t[amount] is known as a tuple variable.

Example 2: Find the loan number for each loan of an amount greater or equal to 10000.

{t| ∃ s ∈ loan(t[loan number] = s[loan number]

 ∧ s[amount]>=10000)}

Resulting relation:

Loan number

L33

L35

Loan number

L98

Example 3: Find the names of all customers who have a loan and an account at the bank.

{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name])

∧ ∃ u ∈ depositor(t[customer-name] = u[customer-name])}

 Resulting relation:

Customer name

Saurabh

Mehak

Example 4: Find the names of all customers having a loan at the “ABC” branch.

{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name]

∧ ∃ u ∈ loan(u[branch-name] = “ABC” ∧ u[loan-number] = s[loan-number]))}

Resulting relation:

Customer name

Saurabh

Domain Relational Calculus in DBMS

Domain Relational Calculus is a non-procedural query language equivalent in power to Tuple
Relational Calculus. Domain Relational Calculus provides only the description of the query but it does not
provide the methods to solve it. In Domain Relational Calculus, a query is expressed as,

{ < x1, x2, x3, ..., xn > | P (x1, x2, x3, ..., xn) }

where, < x1, x2, x3, …, xn > represents resulting domains variables and

 P (x1, x2, x3, …, xn) represents the condition or formula equivalent to the Predicate calculus.

Predicate Calculus Formula:

1. Set of all comparison operators

2. Set of connectives like and, or, not

3. Set of quantifiers

Example:

Table-1: Customer

Customer name Street City

Debomit Kadamtala Alipurduar

Sayantan Udaypur Balurghat

Soumya Nutanchati Bankura

Ritu Juhu Mumbai

Table-2: Loan

Loan number Branch name Amount

L01 Main 200

L03 Main 150

L10 Sub 90

L08 Main 60

Table-3: Borrower

Customer name Loan number

Ritu L01

Debomit L08

Soumya L03

Query-1: Find the loan number, branch, amount of loans of greater than or equal to 100 amount.

{≺l, b, a≻ | ≺l, b, a≻ ∈ loan ∧ (a ≥ 100)}

Resulting relation:

Loan number Branch name Amount

L01 Main 200

L03 Main 150

Query-2: Find the loan number for each loan of an amount greater or equal to 150.

{≺l≻ | ∃ b, a (≺l, b, a≻ ∈ loan ∧ (a ≥ 150)}

Resulting relation:

Loan number

L01

L03

Query-3: Find the names of all customers having a loan at the “Main” branch and find the loan amount .

{≺c, a≻ | ∃ l (≺c, l≻ ∈ borrower ∧ ∃ b (≺l, b, a≻ ∈ loan ∧ (b = “Main”)))}

Resulting relation:

Customer Name Amount

Ritu 200

Debomit 60

Soumya 150

Note:
The domain variables those will be in resulting relation must appear before | within ≺ and ≻ and all the domain
variables must appear in which order they are in original relation or table.

Extended Relational Algebra Operations:

Extended operators are those operators which can be derived from basic operators. There are mainly three
types of extended operators in Relational Algebra:

 Join
 Intersection
 Divide

The relations used to understand extended operators are STUDENT, STUDENT_SPORTS, ALL_SPORTS
and EMPLOYEE which are shown in Table 1, Table 2, Table 3 and Table 4 respectively. STUDENT

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

2 RAMESH GURGAON 9652431543 18

3 SUJIT ROHTAK 9156253131 20

4 SURESH DELHI 9156768971 18

Table 1

 STUDENT_SPORTS

ROLL_NO SPORTS
1 Badminton
2 Cricket
2 Badminton
4 Badminton

Table 2

 ALL_SPORTS

SPORTS

Badminton

Cricket

Table 3

EMPLOYEE

EMP_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

5 NARESH HISAR 9782918192 22

6 SWETA RANCHI 9852617621 21

4 SURESH DELHI 9156768971 18

 Table 4

Intersection (∩): Intersection on two relations R1 and R2 can only be computed if R1 and R2 are union
compatible (These two relation should have same number of attributes and corresponding attributes in two
relations have same domain). Intersection operator when applied on two relations as R1∩R2 will give a
relation with tuples which are in R1 as well as R2. Syntax:

Relation1 ∩ Relation2

Example: Find a person who is student as well as employee- STUDENT ∩ EMPLOYEE

In terms of basic operators (union and minus) :

STUDENT ∩ EMPLOYEE = STUDENT + EMPLOYEE - (STUDENT U EMPLOYEE)

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18

 Conditional Join(⋈c): Conditional Join is used when you want to join two or more relation based on some
conditions. Example: Select students whose ROLL_NO is greater than EMP_NO of employees

STUDENT⋈c STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

In terms of basic operators (cross product and selection) :

σ (STUDENT.ROLL_NO>EMPLOYEE.EMP_NO)(STUDENT×EMPLOYEE)

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE EMP_NO NAME ADDRESS PHONE AGE

2 RAMESH GURGAON 9652431543 18 1 RAM DELHI 9455123451 18

3 SUJIT ROHTAK 9156253131 20 1 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18 1 RAM DELHI 9455123451 18

Equijoin(⋈): Equijoin is a special case of conditional join where only equality condition holds between a
pair of attributes. As values of two attributes will be equal in result of equijoin, only one attribute will be
appeared in result. Example: Select students whose ROLL_NO is equal to EMP_NO of employees.

STUDENT⋈STUDENT.ROLL_NO=EMPLOYEE.EMP_NOEMPLOYEE

In terms∏ of basic operators (cross product, selection and projection) :

∏(STUDENT.ROLL_NO, STUDENT.NAME, STUDENT.ADDRESS, STUDENT.PHONE, STUDENT.AGE EMPLOYEE.NAME,

EMPLOYEE.ADDRESS, EMPLOYEE.PHONE, EMPLOYEE>AGE)(σ (STUDENT.ROLL_NO=EMPLOYEE.EMP_NO) (STUDENT×EMPLOYEE))

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE NAME ADDRESS PHONE AGE

1 RAM DELHI 9455123451 18 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18 SURESH DELHI 9156768971 18

Natural Join(⋈): It is a special case of equijoin in which equality condition hold on all attributes which have
same name in relations R and S (relations on which join operation is applied). While applying natural join on
two relations, there is no need to write equality condition explicitly. Natural Join will also return the similar
attributes only once as their value will be same in resulting relation. Example: Select students whose
ROLL_NO is equal to ROLL_NO of STUDENT_SPORTS as:

STUDENT⋈STUDENT_SPORTS

In terms of basic operators (cross product, selection and projection) :

∏(STUDENT.ROLL_NO, STUDENT.NAME, STUDENT.ADDRESS, STUDENT.PHONE, STUDENT.AGE STUDENT_SPORTS.SPORTS)(σ

(STUDENT.ROLL_NO=STUDENT_SPORTS.ROLL_NO) (STUDENT×STUDENT_SPORTS))

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE SPORTS

1 RAM DELHI 9455123451 18 Badminton

2 RAMESH GURGAON 9652431543 18 Cricket

2 RAMESH GURGAON 9652431543 18 Badminton

4 SURESH DELHI 9156768971 18 Badminton

Natural Join is by default inner join because the tuples which does not satisfy the conditions of join does not
appear in result set. e.g.; The tuple having ROLL_NO 3 in STUDENT does not match with any tuple in
STUDENT_SPORTS, so it has not been a part of result set.

Left Outer Join(⟕): When applying join on two relations R and S, some tuples of R or S does not appear in
result set which does not satisfy the join conditions. But Left Outer Joins gives all tuples of R in the result set.
The tuples of R which do not satisfy join condition will have values as NULL for attributes of S.
Example:Select students whose ROLL_NO is greater than EMP_NO of employees and details of other
students as well

STUDENT⟕STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT

ROLL_NO NAME ADDRESS PHONE AGE EMP_NO NAME ADDRESS PHONE AGE

2 RAMESH GURGAON 9652431543 18 1 RAM DELHI 9455123451 18

3 SUJIT ROHTAK 9156253131 20 1 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18 1 RAM DELHI 9455123451 18

1 RAM DELHI 9455123451 18 NULL NULL NULL NULL NULL

Right Outer Join(⟖): When applying join on two relations R and S, some tuples of R or S does not appear
in result set which does not satisfy the join conditions. But Right Outer Joins gives all tuples of S in the result
set. The tuples of S which do not satisfy join condition will have values as NULL for attributes of R.
Example: Select students whose ROLL_NO is greater than EMP_NO of employees and details of other
Employees as well

STUDENT⟖STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE EMP_NO NAME ADDRESS PHONE AGE

2 RAMESH GURGAON 9652431543 18 1 RAM DELHI 9455123451 18

3 SUJIT ROHTAK 9156253131 20 1 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18 1 RAM DELHI 9455123451 18

NULL NULL NULL NULL NULL 5 NARESH HISAR 9782918192 22

NULL NULL NULL NULL NULL 6 SWETA RANCHI 9852617621 21

NULL NULL NULL NULL NULL 4 SURESH DELHI 9156768971 18

Full Outer Join(⟗): When applying join on two relations R and S, some tuples of R or S does not appear in
result set which does not satisfy the join conditions. But Full Outer Joins gives all tuples of S and all tuples of
R in the result set. The tuples of S which do not satisfy join condition will have values as NULL for attributes
of R and vice versa. Example:Select students whose ROLL_NO is greater than EMP_NO of employees and
details of other Employees as well and other Students as well

STUDENT⟗STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT:

ROLL_NO NAME ADDRESS PHONE AGE EMP_NO NAME ADDRESS PHONE AGE

2 RAMESH GURGAON 9652431543 18 1 RAM DELHI 9455123451 18

3 SUJIT ROHTAK 9156253131 20 1 RAM DELHI 9455123451 18

4 SURESH DELHI 9156768971 18 1 RAM DELHI 9455123451 18

NULL NULL NULL NULL NULL 5 NARESH HISAR 9782918192 22

NULL NULL NULL NULL NULL 6 SWETA RANCHI 9852617621 21

NULL NULL NULL NULL NULL 4 SURESH DELHI 9156768971 18

1 RAM DELHI 9455123451 18 NULL NULL NULL NULL NULL

Division Operator (÷): Division operator A÷B or A/B can be applied if and only if:

 Attributes of B is proper subset of Attributes of A.
 The relation returned by division operator will have attributes = (All attributes of A – All Attributes of

B)
 The relation returned by division operator will return those tuples from relation A which are

associated to every B’s tuple.

 A

x y

a 1

b 2

a 2

d 4

 ÷∏

 B

y

1

2

 The resultant of A/B is

 A ÷ B

x

a

 Division can be expressed in terms of Cross Product , Set Difference and Projection.

 In the above example , for A/B , compute all x values that are not disqualified by some y in B.

 x value is disqualified if attaching y value from B, we obtain xy tuple that is not in A.

 Disqualified x values: ∏x((∏x(A) × B) – A)

 So A/B = ∏x(A) − all disqualified tuples

 A/B = ∏x(A) − ∏x((∏x(A) × B) – A)

 In the above example , disqualified tuples are

b 2

d 4

 So, the resultant is

x

a

Advantages:

Expressive Power: Extended operators allow for more complex queries and transformations that cannot be
easily expressed using basic relational algebra operations.

Data Reduction: Aggregation operators, such as SUM, AVG, COUNT, and MAX, can reduce the amount of
data that needs to be processed and displayed.

Data Transformation: Extended operators can be used to transform data into different formats, such as
pivoting rows into columns or vice versa.

More Efficient: Extended operators can be more efficient than expressing the same query in terms of basic
relational algebra operations, since they can take advantage of specialized algorithms and optimizations.

Disadvantages:

Complexity: Extended operators can be more difficult to understand and use than basic relational algebra
operations. They require a deeper understanding of the underlying data and the operators themselves.

Performance: Some extended operators, such as outer joins, can be expensive in terms of performance,
especially when dealing with large data sets.

Non-standardized: There is no universal set of extended operators, and different relational database
management systems may implement them differently or not at all.

Data Integrity: Some extended operators, such as aggregate functions, can introduce potential problems with
data integrity if not used properly. For example, using AVG on a column that contains null values can result
in unexpected or incorrect results.

Modification of the Database

 The modification of a database has three commands, namely:

 DELETE
 INSERT
 UPDATE

 Let us take the following table and understand each command with a few examples

 R5: FACULTY

————————————————————

FNo FName DNo Qual Salary

————————————————————

22 Alice 21 Ph.D. 35000

24 Ben 22 MTech 30000

25 Max 22 MTech 42000

27 Becca 23 MTech 28000

30 Bella 23 MTech 32000

33 Priya 24 Ph.D. 33000

35 Riya 24 Ph.D. 32000

37 Sia 25 MTech 26000

39 Tom 25 MTech 24000

40 Bella 25 MTech 32000

————————————————————

 Delete Command

This command helps us to remove rows from the table.

 Syntax : DELETE from r where P

Example-1: Remove all the employees from Dept. no 24.

 DELETE From FACULTY-1

 Where DNo = 24 ;

Output : There will be 8 tuples left in Faculty-1.

 Example-2 : Remove all the employees from ECE Dept.

 DELETE From FACULTY-1

 Where DNo = (Select DNo

 From DEPT

 Where DName = ‘ECE’) ;

 Output : There will be 8 tuples left in Faculty-1.

 Example-3 : Remove all the employees whose salary is less than 30000.

 Delete From FACULTY-1

 Where Salary< 30000 ;

 Output : There will be 7 tuples left in Faculty-1.

 Example-4 : Remove all the employees whose salary is less than the average salary of all the employees.

 Delete From FACULTY-1

 Where Salary< (Select avg(Salary)

 From FACULTY-1) ;

FNo FName DNo Qual Salary
22 Alice 21 Ph.D. 35000
25 Max 22 MTech 42000
30 Bella 23 MTech 32000
33 Priya 24 Ph.D. 33000
35 Riya 24 Ph.D. 32000
40 Bella 25 MTech 34000

Note : The average salary is : 31,600

 Insert Command

 This command helps us to insert rows into the table.

Syntax : INSERT into relation-name values (…..)

 Example-1 : Add a tuple to FACULTY-1.

 Insert into FACULTY-1 values (532, ‘XX’, 28,’MTech’,25000) ;

 Example-2 :Add a tuple to STUD relation

Insert into STUD values (130, ‘def’, 24) ;

 Example-3 :select tuples from FACULTY-1 and create a

 relation FACULTY-2 with tuples belonging to DNo 25.

 Let’s assume table structure for FACULTY-2 is already there.

 Insert into FACULTY-2

 (Select FNo, FName, DNo, Qual, Salary

 From FACULTY-1

 Where DNo = 25) ;

 R5 : FACULTY-2

————————————————————

FNo FName DNo Qual Salary

————————————————————

37 Sia 25 MTech 26000

39 Tom 25 MTech 24000

40 Bella 25 MTech 32000

————————————————————

 Note : One can create a new relation by considering data from one or more relations using the insert
command.

 Update Command

 This command helps us to modify columns in table rows.

Syntax : update <relation name>

 set <assignment>

 where <condition>

 Example-1 :Increase the salary of the employees who are drawing more than 35000 by 5 %.

 Update FACULTY-1

 Set Salary = Salary * 1.05

 Where Salary >35000 ;

 Example-2 :Increase the salary of the employees who are drawing less than average of all the employees, by
10 %.

 Update FACULTY-1

 Set Salary = Salary * 1.1

 Where Salary <

 (select avg(salary)

 From FACULTY-1) ;

Example-3 :Increase the salary of the employees who are drawing less than 30000, by 8 % and for others by
6 %.

 Update FACULTY-1

 Set Salary = Salary * 1.06

 Where Salary >30000 ;

 Update FACULTY-1

 Set Salary = Salary * 1.08

 Where Salary <30000 ;

 Views

Views are like virtual tables, which also contain rows and columns like that of a normal table in a database. A
view can be created using more than one table in a database. A view can either have a specific row with a
specification or may also contain all the rows.

 Syntax : Create view V as < query expression > ‘View’ is a logical relation.

 Example-1 : Create a view ‘student’ containing SNo, Sname.

 Create view student as

 (Select SNo, SName

 From STUD) ;

Output : student (VIEW)

SNo SName

 121 xyz

 123 pqr

 126 mnp

 128 abc

 130 jkl

Example-2 : Create a view containing SNo, SName, CNo, CName.

 Create view stud_course

 (Select SNo, SName, CNo, CName

 From STUD, COURSE

 Where STUD.CNo = COURSE.CNo ;

Output : stud_course (VIEW)

 SNo SName CNo CName

 121 xyz 61 DBMS

 126 mnp 65 CO

 128 abc 67 OS

 Example-3: Find SName and the CName the student is studying using stud_course view

Select SName, CName From stud_course ;

Output : SName CName

 xyz DBMS

 mnp CO

 abc OS

 Example-4 : Create a view containing SName and DName in which he is studying.

 Consider following relations :

R1 : STUD R2 : DEPT

SNo SName DNo DNo DName

121 xyz 21 21 CSE

123 pqr 21 22 IT

126 mnp 22 23 ECE

128 abc 22 24 ME

130 jkl 23 25 EEE

 Create a view stud_dept as

 (Select SName, DName

 From STUD, DEPT

Where STUD.DNo = DEPT.DNo ;

 Output : stud_dept (VIEW)

 SName DName

 xyz CSE

 pqr CSE

 mnp IT

 abc IT

 jkl ECE

Example-5 : Find the list of students studying in ECE department

 using stud_dept view.

 Select SName

From stud_dept

Where DName = ‘ECE’ ;.

 Output : SName

 jkl

 There are three stages of Views:

 Materialized Views : If a view is stored in the memory, then it is called a ‘materialized view’.
 Materialized View Maintenance : The process of keeping materialized view up-to-date is called

‘materialized view maintenance’.
 Update of a View : Like a relation, one can update a view also.

 Example-6 : Insert a tuple into the view ‘stud_dept’.

 Insert into stud_dept values (‘ghi’, ‘CIVIL’)

 Example-7 : After inserting the above tuple, display the student name studying in the CIVIL department
using the view ‘stud_dept’.

 Select SName
 From stud_dept
 Where DName = ‘CIVIL’ ;

Output : SName
 ghi

UNIT IV

INTEGRITY CONSTRAINTS:

o Integrity constraints are a set of rules. It is used to maintain the quality of information.
o Integrity constraints ensure that the data insertion, updating, and other processes have to be performed

in such a way that data integrity is not affected.
o Thus, integrity constraint is used to guard against accidental damage to the database.

Types of Integrity Constraint

1. Domain constraints

o Domain constraints can be defined as the definition of a valid set of values for an attribute.
o The data type of domain includes string, character, integer, time, date, currency, etc. The value of the

attribute must be available in the corresponding domain.

Example:

2. Entity integrity constraints

o The entity integrity constraint states that primary key value can't be null.
o This is because the primary key value is used to identify individual rows in relation and if the primary

key has a null value, then we can't identify those rows.
o A table can contain a null value other than the primary key field.

Example:

3. Referential Integrity Constraints

o A referential integrity constraint is specified between two tables.
o In the Referential integrity constraints, if a foreign key in Table 1 refers to the Primary Key of Table

2, then every value of the Foreign Key in Table 1 must be null or be available in Table 2.

Example:

4. Key constraints

o Keys are the entity set that is used to identify an entity within its entity set uniquely.
o An entity set can have multiple keys, but out of which one key will be the primary key. A primary key

can contain a unique and null value in the relational table.

Example:

Query By Example (QBE)

 In normal queries we fire on the database they should be correct and in a well-defined structure which
means they should follow a proper syntax if the syntax or query is wrong definitely we will get an error and
due to that our application or calculation definitely going to stop. So to overcome this problem QBE was
introduced. QBE stands for Query By Example and it was developed in 1970 by Moshe Zloof at IBM.

It is a graphical query language where we get a user interface and then we fill some required fields to get our
proper result.

In SQL we will get an error if the query is not correct but in the case of QBE if the query is wrong either we
get a wrong answer or the query will not be going to execute but we will never get any error.

Note-:
In QBE we don’t write complete queries like SQL or other database languages it comes with some blank so we
need to just fill that blanks and we will get our required result.

Example
Consider the example where a table ‘SAC’ is present in the database with Name, Phone_Number, and Branch
fields. And we want to get the name of the SAC-Representative name who belongs to the MCA Branch. If we
write this query in SQL we have to write it like

SELECT NAME

FROM SAC

WHERE BRANCH = 'MCA'"

And definitely, we will get our correct result. But in the case of QBE, it may be done as like there is a field
present and we just need to fill it with “MCA” and then click on the SEARCH button we will get our required
result.

Points about QBE:

 Supported by most of the database programs.

 It is a Graphical Query Language.

 Created in parallel to SQL development

QUEL:

 QUEL stands for Query Language.

 It is a data definition and data manipulation for INGRES.

 INGRES stands for Interactive Graphics and Retrieval System.

 INGRES is a relational database management system developed by Michael Stonebraker.

 QUEL does not support relational algebraic operations such as intersection, minus or union.

 It is based on tuple calculus and does not support nested sub queries.

Data Definition in QUEL

Following are the data definition statements used in QUEL,
1. CREATE
2. RANGE
3. INDEX
4. DESTROY
5. MODIFY

Statements Description Syntax

CREATE It is used to create tables or relations. CREATE <table-name>
<list-of-column-name>

RANGE It allows to declare a range variable and restricts to assume the
values that are rows from the specified table. Row variables are
called Range variables in QUEL.

RANGE OF <variable-
name> IS <relation-name>

INDEX It is used to specify the name of the secondary index to be built and
the columns in the table on which the index is to be created.

INDEX ON <table-name> IS
<index-name> (column-name
[, column-name, ...])

DESTROY It is used to eliminate a table, index or view. DESTROY name [, name, ...]

MODIFY It is used to modify the structure of a table. The storage structure
supported by INGRES are B-tree, hash, ISAM and heap. The
storage structure will be modified from the current one to the one
specified in the statement.

MODIFY <table-name>
TO <storage-structure>
ON <column-name>

Usage

QUEL statements are always defined by tuple variables, which can be used to limit queries or return result
sets. Consider this example, taken from one of the first original Ingres papers:[2]

Example 1.1. Compute salary divided by age-18 for employee Jones.

range of E is EMPLOYEE

retrieve into W

(COMP = E.Salary / (E.Age - 18))

where E.Name = "Jones"

Here E is a tuple variable which ranges over the EMPLOYEE relation, and all tuples in that relation are found
which satisfy the qualification E.Name = “Jones.” The result of the query is a new relation W, which has a
single domain COMP that has been calculated for each qualifying tuple.

An equivalent SQL statement is:

create table w as

select (e.salary / (e.age - 18)) as comp

from employee as e

where e.name = 'Jones'

Here is a sample of a simple session that creates a table, inserts a row into it, and then retrieves and modifies
the data inside it and finally deletes the row that was added (assuming that name is a unique field).

QUEL SQL

create student(name = c10, age = i4, sex = c1, state
= c2)

range of s is student

append to s (name = "philip", age = 17, sex = "m",
state = "FL")

retrieve (s.all) where s.state = "FL"

replace s (age=s.age+1)

retrieve (s.all)

delete s where s.name="philip"

create table student(name char(10), age int, sex
char(1), state char(2));

insert into student (name, age, sex, state) values
('philip', 17, 'm', 'FL');

select * from student where state = 'FL';

update student set age=age+1;

select * from student;

delete from student where name='philip';

Another feature of QUEL was a built-in system for moving records en-masse into and out of the system.
Consider this command:

copy student(name=c0, comma=d1, age=c0, comma=d1, sex=c0, comma=d1, address=c0, nl=d1)

into "/student.txt"

which creates a comma-delimited file of all the records in the student table. The d1 indicates a delimiter, as
opposed to a data type. Changing the into to a from reverses the process. Similar commands are available in
many SQL systems, but usually as external tools, as opposed to being internal to the SQL language. This makes
them unavailable to stored procedures.

QUEL has an extremely powerful aggregation capability. Aggregates can be nested, and different aggregates
can have independent by-lists and/or restriction clauses. For example:

retrieve (a=count(y.i by y.d where y.str = "ii*" or y.str = "foo"), b=max(count(y.i by y.d)))

This example illustrates one of the arguably less desirable quirks of QUEL, namely that all string comparisons
are potentially pattern matches. y.str = "ii*" matches all y.str values starting with ii. In contrast, SQL
uses = only for exact matches, while like is used when pattern matching is required.

DATALOG:

 Datalog is a programming language used in deductive database work. It is part of another language
called Prolog and incorporates basic logic principles for data integration, database queries, etc. Datalog is used
by many open-source systems and other database systems.

 Database programmers like Datalog for its simplicity. As a simple declarative logic-based language, Datalog
relies on a conventional clause format. In a declarative language, the user enters the items that he/she wants to
find and then the system takes over, finding values that comply with the user’s request.

Like other types of query systems, a Datalog query involves setting up a command-based premise: for example,
many simpler Datalog queries consist of an object and a set of modifiers or constraints in parentheses. The
simple syntax allows administrators to quickly learn how to get the results they need from the database.
However, as with other systems, Datalog users have to deal with the emergence of raw or unstructured data
sets in a database technology. In other words, whereas databases of the past tended to have strict “table” data
formats, today’s databases may have much more abstracted information that has to be queried and handled in
a different way

In Datalog input, whitespace characters are ignored except when they separate adjacent tokens or when they
occur in strings. Comments are also considered to be whitespace. The character % introduces a comment,
which extends to the next line break. Comments do not occur inside strings.

A variable is a sequence of Unicode "Uppercase" and "Lowercase" letters, digits, and the underscore character.
A variable must begin with a Unicode "Uppercase" letter.

An identifier is a sequence of printing characters that does not contain any of the following
characters: (, `, ',), =, :, ., ~, ?, ", %, and space. An identifier must not begin with a Latin capital letter. Note
that the characters that start punctuation are forbidden in identifiers, but the hyphen character is allowed.

A string is a sequence of characters enclosed in double quotes. Characters other than double quote, newline,
and backslash may be directly included in a string. The remaining characters may be specified using escape
characters, \", \ , and \\ respectively.

A literal is a predicate symbol followed by an optional parenthesized list of comma separated terms, or it is
an external query as described below. A predicate symbol is either an identifier or a string. A term is either a
variable or a constant. A constant is an identifier, string, integer, or boolean, where booleans are written the
same as the identifiers true and false, and integers are written the same as identifiers 0 or those with a nonempty
sequence of digits, no leading zero, and optionally prefixed with -. As a special case, two terms separated
by = (!=) is a literal for the equality (inequality) predicate. The following are literals:

 parent(john, douglas)

 zero-arity-literal

 "="(3,3)

 ""(-0-0-0,&&&,***,"\00")

 42

A clause is a head literal followed by an optional body. A body is a comma separated list of literals. A clause
without a body is called a fact, and a rule when it has one. The punctuation :- separates the head of a rule from
its body. A clause is safe if every variable in its head occurs in some literal in its body. The following are safe
clauses:

 parent(john, douglas)

 ancestor(A, B) :-

 parent(A, B)

 ancestor(A, B) :-

 parent(A, C),

 ancestor(C, B)

A program is a sequence of zero or more statements. A statement is an assertion, a retraction, a query, or a
requirement. An assertion is a clause followed by a ., and it adds the clause to the database if it is safe. A
retraction is a clause followed by ~, and it removes the clause from the database. A query is a literal followed
by a ?. A requirement is a (, then an identifier, then), then ., and it imports functions that can be called as
external queries.

A external query is a variable, then :-, then an identifier, then a parenthesized list of comma separated terms.
Beware that an external query can break Datalog’s termination guarantee.

The following BNF describes the syntax of Datalog.

 ‹program› ::= ‹statement›*

 ‹statement› ::= ‹assertion›

 | ‹retraction›

 | ‹query›

 | ‹requirement›

 ‹assertion› ::= ‹clause› .

 ‹retraction› ::= ‹clause› ~

 ‹query› ::= ‹literal› ?

 ‹requirement› ::= (‹IDENTIFIER›) .

 ‹clause› ::= ‹literal› :- ‹body›

 | ‹literal›

 ‹body› ::= ‹literal› , ‹body›

 | ‹literal›

 ‹literal› ::= ‹predicate-sym› ()

 | ‹predicate-sym› (‹terms›)

 | ‹predicate-sym›

 | ‹term› = ‹term›

 | ‹term› != ‹term›

 | ‹VARIABLE› :- ‹external-sym› (‹terms›)

 ‹predicate-sym› ::= ‹IDENTIFIER›

 | ‹STRING›

 ‹terms› ::= ‹term›

 | ‹term› , ‹terms›

 ‹term› ::= ‹VARIABLE›

 | ‹constant›

 ‹constant› ::= ‹IDENTIFIER›

 | ‹STRING›

 | ‹INTEGER›

 | true | false

The effect of running a Datalog program is to modify the database as directed by its statements, and then to
return the literals designated by the query. The modified database is provided as theory.

The following is a program:

 #lang datalog

 edge(a, b). edge(b, c). edge(c, d). edge(d, a).

 path(X, Y) :- edge(X, Y).

 path(X, Y) :- edge(X, Z), path(Z, Y).

 path(X, Y)?

Here is a program that uses + and - from racket/base as external queries:

 #lang datalog

 (racket/base).

 fib(0, 0).

 fib(1, 1).

 fib(N, F) :- N != 1,

 N != 0,

 N1 :- -(N, 1),

 N2 :- -(N, 2),

 fib(N1, F1),

 fib(N2, F2),

 F :- +(F1, F2).

 fib(30, F)?

The Datalog REPL accepts new statements that are executed as if they were in the original program text.

Domain constraints:

Domain Constraints are user-defined columns that help the user to enter the value according to the data type.
And if it encounters a wrong input it gives the message to the user that the column is not fulfilled properly. Or

in other words, it is an attribute that specifies all the possible values that the attribute can hold like integer,
character, date, time, string, etc. It defines the domain or the set of values for an attribute and ensures that the
value taken by the attribute must be an atomic value(Can’t be divided) from its domain.

Domain Constraint = data type(integer / character/date / time / string / etc.) +

 Constraints(NOT NULL / UNIQUE / PRIMARY KEY /

 FOREIGN KEY / CHECK / DEFAULT)

Type of domain constraints:

There are two types of constraints that come under domain constraint and they are:

1. Domain Constraints – Not Null: Null values are the values that are unassigned or we can also say that
which are unknown or the missing attribute values and by default, a column can hold the null values. Now as
we know that the Not Null constraint restricts a column to not accept the null values which means it only
restricts a field to always contain a value which means you cannot insert a new record or update a record
without adding a value into the field.

Example: In the ’employee’ database, every employee must have a name associated with them.

Create table employee

(employee_id varchar(30),

employee_name varchar(30) not null,

salary NUMBER);

2. Domain Constraints – Check: It defines a condition that each row must satisfy which means it restricts the
value of a column between ranges or we can say that it is just like a condition or filter checking before saving
data into a column. It ensures that when a tuple is inserted inside the relation must satisfy the predicate given
in the check clause.

Example: We need to check whether the entered id number is greater than 0 or not for the employee table.

Create table employee

(employee_id varchar(30) not null check(employee_id > 0),

employee_name varchar(30),

salary NUMBER);

The above example creates CHECK constraints on the employee_id column and specifies that the column
employee_id must only include integers greater than 0.

Note: In DBMS a table is a combination of rows and columns in which we have some unique attribute names
associated with it. And basically, a domain is a unique set of values present in a table. Let’s take an example,
suppose we have a table student which consists of 3 attributes as NAME, ROLL NO, and MARKS. Now ROLL
NO attributes can have only numbers associated with them and they won’t contain any alphabet. So we can say
that it contains the domain of integer only and it can be only a positive number greater than 0.

Example 1:

Creating a table “student” with the “ROLL” field having a value greater than 0.

Domain:

Table:

The above example will only accept the roll no. which is greater than 0.

Example 2:

Creating a table “Employee” with the “AGE” field having a value greater than 18.

Domain:

Table:

The above example will only accept the Employee with an age greater than 18.

REFERENTIAL INTEGRITY:

A referential integrity constraint is also known as foreign key constraint. A foreign key is a key whose
values are derived from the Primary key of another table.

The table from which the values are derived is known as Master or Referenced Table and the Table in which
values are inserted accordingly is known as Child or Referencing Table, In other words, we can say that the
table containing the foreign key is called the child table, and the table containing the Primary key/candidate
key is called the referenced or parent table. When we talk about the database relational model, the candidate
key can be defined as a set of attribute which can have zero or more attributes.

The syntax of the Master Table or Referenced table is:

1. CREATE TABLE Student (Roll int PRIMARY KEY, Name varchar(25) , Course varchar(10));

Here column Roll is acting as Primary Key, which will help in deriving the value of foreign key in the child
table.

The syntax of Child Table or Referencing table is:

1. CREATE TABLE Subject (Roll int references Student, SubCode int, SubName varchar(10));

In the above table, column Roll is acting as Foreign Key, whose values are derived using the Roll value of
Primary key from Master table.

Foreign Key Constraint OR Referential Integrity constraint.

There are two referential integrity constraint:

Insert Constraint: Value cannot be inserted in CHILD Table if the value is not lying in MASTER Table

Delete Constraint: Value cannot be deleted from MASTER Table if the value is lying in CHILD Table

Suppose you wanted to insert Roll = 05 with other values of columns in SUBJECT Table, then you will
immediately see an error "Foreign key Constraint Violated" i.e. on running an insertion command as:

Insert into SUBJECT values(5, 786, OS); will not be entertained by SQL due to Insertion Constraint (As
you cannot insert value in a child table if the value is not lying in the master table, since Roll = 5 is not present
in the master table, hence it will not be allowed to enter Roll = 5 in child table)

Similarly, if you want to delete Roll = 4 from STUDENT Table, then you will immediately see an error "Foreign
key Constraint Violated" i.e. on running a deletion command as:

Delete from STUDENT where Roll = 4; will not be entertained by SQL due to Deletion Constraint. (As you
cannot delete the value from the master table if the value is lying in the child table, since Roll = 5 is present in
the child table, hence it will not be allowed to delete Roll = 5 from the master table, lets if somehow we managed
to delete Roll = 5, then Roll = 5 will be available in child table which will ultimately violate insertion constraint.
)

ON DELETE CASCADE.

As per deletion constraint: Value cannot be deleted from the MASTER Table if the value is lying in CHILD
Table. The next question comes can we delete the value from the master table if the value is lying in the child
table without violating the deletion constraint? i.e. The moment we delete the value from the master table the
value corresponding to it should also get deleted from the child table.

The answer to the above question is YES, we can delete the value from the master table if the value is lying in
the child table without violating the deletion constraint, we have to do slight modification while creating the
child table, i.e. by adding on delete cascade.

TABLE SYNTAX

1. CREATE TABLE Subject (Roll int references Student on delete cascade, SubCode int, SubName varc
har(10));

In the above syntax, just after references keyword(used for creating foreign key), we have added on delete
cascade, by adding such now, we can delete the value from the master table if the value is lying in the child
table without violating deletion constraint. Now if you wanted to delete Roll = 5 from the master table even
though Roll = 5 is lying in the child table, it is possible because the moment you give the command to delete
Roll = 5 from the master table, the row having Roll = 5 from child table will also get deleted.

The above two tables STUDENT and SUBJECT having four values each are shown, now suppose you are
looking to delete Roll = 4 from STUDENT(Master) Table by writing a SQL command: delete from STUDENT
where Roll = 4;

The moment SQL execute the above command the row having Roll = 4 from SUBJECT(Child) Table will also
get deleted, The resultant STUDENT and SUBJECT table will look like:

From the above two tables STUDENT and SUBJECT, you can see that in both the table Roll = 4 gets deleted
at one go without violating deletion constraint.

Sometimes a very important question is asked in interviews that: Can Foreign Key have NULL values?

The answer to the above question is YES, it may have NULL values, whereas the Primary key cannot be NULL
at any cost. To understand the above question practically let's understand below the concept of delete null.

ON DELETE NULL.

As per deletion constraint: Value cannot be deleted from the MASTER Table if the value is lying in CHILD
Table. The next question comes can we delete the value from the master table if the value is lying in the child
table without violating the deletion constraint? i.e. The moment we delete the value from the master table the
value corresponding to it should also get deleted from the child table or can be replaced with the NULL value.

The answer to the above question is YES, we can delete the value from the master table if the value is lying in
child table without violating deletion constraint by inserting NULL in the foreign key, we have to do slight
modification while creating child table, i.e. by adding on delete null.

TABLE SYNTAX:

1. CREATE TABLE Subject (Roll int references Student on delete null, SubCode int, SubName varchar(
10));

In the above syntax, just after references keyword(used for creating foreign key), we have added on delete
null, by adding such now, we can delete the value from the master table if the value is lying in the child table
without violating deletion constraint. Now if you wanted to delete Roll = 4 from the master table even though
Roll =4 is lying in the child table, it is possible because the moment you give the command to delete Roll = 4
from the master table, the row having Roll = 4 from child table will get replaced by a NULL value.

The above two tables STUDENT and SUBJECT having four values each are shown, now suppose you are
looking to delete Roll = 4 from STUDENT(Master) Table by writing a SQL command: delete from STUDENT
where Roll = 4;

The moment SQL execute the above command the row having Roll = 4 from SUBJECT(Child) Table will get
replaced by a NULL value, The resultant STUDENT and SUBJECT table will look like:

From the above two tables STUDENT and SUBJECT, you can see that in table STUDENT Roll = 4 get deleted
while the value of Roll = 4 in the SUBJECT table is replaced by NULL. This proves that the Foreign key can

have null values. If in the case in SUBJECT Table, column Roll is Primary Key along with Foreign Key then
in that case we could not make a foreign key to have NULL values.

Assertions

Assertions are different from check constraints in the way that check constraints are rules that relate to one
single row only. Assertions, on the other hand, can involve any number of other tables, or any number of other
rows in the same table. Assertions also check a condition, which must return a Boolean value. We can take an
illustrative example.

Let us imagine that we have the following table, which contains employees in a company — we then also store
an attribute containing their salary.

We then want to make an assertion that there is no employee in our database, which is paid more than 30.000$
or less than 500$. It would then look like:

Then it makes sure that we never have someone who receives a salary outside these bounds.

Triggers

We can now consider the concept of triggers. Triggers are sometimes called event-condition-action
rules. This is since triggers are only active in certain scenarios. We can describe the process of a trigger:

 Triggers are only awakened when certain events occur. This is usually the event of ‘delete’, ‘insert’, or
‘update’.

 When the trigger is awakened, the trigger tests a condition. If the condition does not hold, then nothing
else associated with the trigger happens in response to the given event. On the other hand, if the trigger
is satisfied then a pre-defined action is performed by the trigger.

We can take an example of a trigger. Let us imagine that we have the following database:

We already have a check constraint, where we check the salary. It could, however, also be written as a trigger.
We could write a trigger that is awakened every time we want to insert something into our database, which
then checks a condition upon the salary:

We can now see that our trigger is awakened every time we want to insert something into our database and it
is executed before it is inserted — this is since we need to check the condition before we are willing to insert.
It is also possible to create triggers that are executed after, or even before and after.

Functional Dependency

The functional dependency is a relationship that exists between two attributes. It typically exists between the
primary key and non-key attribute within a table.

1. X → Y

The left side of FD is known as a determinant, the right side of the production is known as a dependent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know
the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

1. Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

1. Trivial functional dependency

o A → B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A → A, B → B

Example:

1. Consider a table with two columns Employee_Id and Employee_Name.

2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as

3. Employee_Id is a subset of {Employee_Id, Employee_Name}.

4. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial depende
ncies too.

2. Non-trivial functional dependency

o A → B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

1. ID → Name,

2. Name → DOB

UNIT V

PL/SQL

INTRODUCTION:

 The PL/SQL programming language was developed by Oracle Corporation in the late 1980s as
procedural extension language for SQL and the Oracle relational database. Following are certain notable
facts about PL/SQL −

 PL/SQL is a completely portable, high-performance transaction-processing language.

 PL/SQL provides a built-in, interpreted and OS independent programming environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming language.

 Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM DB2.

Features of PL/SQL

PL/SQL has the following features −

 PL/SQL is tightly integrated with SQL.

 It offers extensive error checking.

 It offers numerous data types.

 It offers a variety of programming structures.

 It supports structured programming through functions and procedures.

 It supports object-oriented programming.

 It supports the development of web applications and server pages.

Advantages of PL/SQL

PL/SQL has the following advantages −

 SQL is the standard database language and PL/SQL is strongly integrated with SQL. PL/SQL supports
both static and dynamic SQL. Static SQL supports DML operations and transaction control from
PL/SQL block. In Dynamic SQL, SQL allows embedding DDL statements in PL/SQL blocks.

 PL/SQL allows sending an entire block of statements to the database at one time. This reduces network
traffic and provides high performance for the applications.

 PL/SQL gives high productivity to programmers as it can query, transform, and update data in a
database.

 PL/SQL saves time on design and debugging by strong features, such as exception handling,
encapsulation, data hiding, and object-oriented data types.

 Applications written in PL/SQL are fully portable.

 PL/SQL provides high security level.

 PL/SQL provides access to predefined SQL packages.

 PL/SQL provides support for Object-Oriented Programming.

 PL/SQL provides support for developing Web Applications and Server Pages.

the Basic Syntax of PL/SQL which is a block-structured language; this means that the PL/SQL programs are
divided and written in logical blocks of code. Each block consists of three sub-parts −

S.No Sections & Description

1

Declarations

This section starts with the keyword DECLARE. It is an optional section and
defines all variables, cursors, subprograms, and other elements to be used in the
program.

2

Executable Commands

This section is enclosed between the keywords BEGIN and END and it is a
mandatory section. It consists of the executable PL/SQL statements of the
program. It should have at least one executable line of code, which may be just
a NULL command to indicate that nothing should be executed.

3
Exception Handling

This section starts with the keyword EXCEPTION. This optional section
contains exception(s) that handle errors in the program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within other PL/SQL blocks
using BEGIN and END. Following is the basic structure of a PL/SQL block −

DECLARE
 <declarations section>
BEGIN
 <executable command(s)>
EXCEPTION
 <exception handling>
END;
The 'Hello World' Example

DECLARE
 message varchar2(20):= 'Hello, World!';
BEGIN
 dbms_output.put_line(message);
END;
/

The end; line signals the end of the PL/SQL block. To run the code from the SQL command line, you may
need to type / at the beginning of the first blank line after the last line of the code. When the above code is
executed at the SQL prompt, it produces the following result −

Hello World

PL/SQL procedure successfully completed.
The PL/SQL Identifiers

PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved words. The
identifiers consist of a letter optionally followed by more letters, numerals, dollar signs, underscores, and
number signs and should not exceed 30 characters.

By default, identifiers are not case-sensitive. So you can use integer or INTEGER to represent a numeric
value. You cannot use a reserved keyword as an identifier.

The PL/SQL Delimiters

A delimiter is a symbol with a special meaning. Following is the list of delimiters in PL/SQL −

Delimiter Description

+, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

' Character string delimiter

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

" Quoted identifier delimiter

= Relational operator

@ Remote access indicator

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

<<, >> Label delimiter (begin and end)

/*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

.. Range operator

<, >, <=, >= Relational operators

<>, '=, ~=, ^= Different versions of NOT EQUAL

The PL/SQL Comments

Program comments are explanatory statements that can be included in the PL/SQL code that you write and
helps anyone reading its source code. All programming languages allow some form of comments.

The PL/SQL supports single-line and multi-line comments. All characters available inside any comment are
ignored by the PL/SQL compiler. The PL/SQL single-line comments start with the delimiter -- (double hyphen)
and multi-line comments are enclosed by /* and */.

DECLARE
 -- variable declaration
 message varchar2(20):= 'Hello, World!';
BEGIN
 /*
 * PL/SQL executable statement(s)
 */
 dbms_output.put_line(message);
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Hello World

PL/SQL procedure successfully completed.

PL/SQL Program Units

A PL/SQL unit is any one of the following −

 PL/SQL block

 Function

 Package

 Package body

 Procedure

 Trigger

 Type

 Type body

S.No Category & Description

1 Scalar

Single values with no internal components, such as a NUMBER, DATE, or BOOLEAN.

2
Large Object (LOB)

Pointers to large objects that are stored separately from other data items, such as text, graphic
images, video clips, and sound waveforms.

3
Composite

Data items that have internal components that can be accessed individually. For example,
collections and records.

4 Reference

Pointers to other data items.

PL/SQL Scalar Data Types and Subtypes

PL/SQL Scalar Data Types and Subtypes come under the following categories −

S.No Date Type & Description

1 Numeric

Numeric values on which arithmetic operations are performed.

2 Character

Alphanumeric values that represent single characters or strings of characters.

3 Boolean

Logical values on which logical operations are performed.

4 Datetime

Dates and times.

PL/SQL provides subtypes of data types. For example, the data type NUMBER has a subtype called INTEGER.
You can use the subtypes in your PL/SQL program to make the data types compatible with data types in other
programs while embedding the PL/SQL code in another program, such as a Java program.

PL/SQL Numeric Data Types and Subtypes

Following table lists out the PL/SQL pre-defined numeric data types and their sub-types −

S.No Data Type & Description

1 PLS_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647, represented in 32 bits

2 BINARY_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647, represented in 32 bits

3 BINARY_FLOAT

Single-precision IEEE 754-format floating-point number

4 BINARY_DOUBLE

Double-precision IEEE 754-format floating-point number

5
NUMBER(prec, scale)

Fixed-point or floating-point number with absolute value in range 1E-130 to (but not
including) 1.0E126. A NUMBER variable can also represent 0

6 DEC(prec, scale)

ANSI specific fixed-point type with maximum precision of 38 decimal digits

7 DECIMAL(prec, scale)

IBM specific fixed-point type with maximum precision of 38 decimal digits

8 NUMERIC(pre, secale)

Floating type with maximum precision of 38 decimal digits

9
DOUBLE PRECISION

ANSI specific floating-point type with maximum precision of 126 binary digits
(approximately 38 decimal digits)

10
FLOAT

ANSI and IBM specific floating-point type with maximum precision of 126 binary digits
(approximately 38 decimal digits)

11 INT

ANSI specific integer type with maximum precision of 38 decimal digits

12 INTEGER

ANSI and IBM specific integer type with maximum precision of 38 decimal digits

13 SMALLINT

ANSI and IBM specific integer type with maximum precision of 38 decimal digits

14
REAL

Floating-point type with maximum precision of 63 binary digits (approximately 18
decimal digits)

Following is a valid declaration −

DECLARE
 num1 INTEGER;
 num2 REAL;
 num3 DOUBLE PRECISION;
BEGIN
 null;
END;
/

When the above code is compiled and executed, it produces the following result −

PL/SQL procedure successfully completed

PL/SQL Character Data Types and Subtypes

Following is the detail of PL/SQL pre-defined character data types and their sub-types −

S.No Data Type & Description

1 CHAR

Fixed-length character string with maximum size of 32,767 bytes

2 VARCHAR2

Variable-length character string with maximum size of 32,767 bytes

3 RAW

Variable-length binary or byte string with maximum size of 32,767 bytes, not interpreted by PL/SQL

4 NCHAR

Fixed-length national character string with maximum size of 32,767 bytes

5 NVARCHAR2

Variable-length national character string with maximum size of 32,767 bytes

6 LONG

Variable-length character string with maximum size of 32,760 bytes

7 LONG RAW

Variable-length binary or byte string with maximum size of 32,760 bytes, not interpreted by PL/SQL

8 ROWID

Physical row identifier, the address of a row in an ordinary table

9 UROWID

Universal row identifier (physical, logical, or foreign row identifier)

PL/SQL Boolean Data Types

The BOOLEAN data type stores logical values that are used in logical operations. The logical values are the
Boolean values TRUE and FALSE and the value NULL.

However, SQL has no data type equivalent to BOOLEAN. Therefore, Boolean values cannot be used in −

 SQL statements

 Built-in SQL functions (such as TO_CHAR)

 PL/SQL functions invoked from SQL statements
PL/SQL Datetime and Interval Types

The DATE datatype is used to store fixed-length datetimes, which include the time of day in seconds since
midnight. Valid dates range from January 1, 4712 BC to December 31, 9999 AD.

The default date format is set by the Oracle initialization parameter NLS_DATE_FORMAT. For example, the
default might be 'DD-MON-YY', which includes a two-digit number for the day of the month, an abbreviation
of the month name, and the last two digits of the year. For example, 01-OCT-12.

Each DATE includes the century, year, month, day, hour, minute, and second. The following table shows the
valid values for each field −

Field Name Valid Datetime Values Valid Interval
Values

YEAR
-4712 to 9999 (excluding year 0) Any nonzero

integer

MONTH 01 to 12 0 to 11

DAY
01 to 31 (limited by the values of
MONTH and YEAR, according to the
rules of the calendar for the locale)

Any nonzero
integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND

00 to 59.9(n), where 9(n) is the
precision of time fractional seconds

0 to 59.9(n), where
9(n) is the
precision of
interval fractional
seconds

TIMEZONE_HOUR
-12 to 14 (range accommodates
daylight savings time changes)

Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable

TIMEZONE_REGION
Found in the dynamic performance
view V$TIMEZONE_NAMES

Not applicable

TIMEZONE_ABBR
Found in the dynamic performance
view V$TIMEZONE_NAMES

Not applicable

PL/SQL Large Object (LOB) Data Types

Large Object (LOB) data types refer to large data items such as text, graphic images, video clips, and sound
waveforms. LOB data types allow efficient, random, piecewise access to this data. Following are the predefined
PL/SQL LOB data types −

Data Type Description Size

BFILE
Used to store large binary objects in
operating system files outside the
database.

System-dependent. Cannot
exceed 4 gigabytes (GB).

BLOB
Used to store large binary objects in
the database.

8 to 128 terabytes (TB)

CLOB
Used to store large blocks of character
data in the database.

8 to 128 TB

NCLOB
Used to store large blocks of NCHAR
data in the database.

8 to 128 TB

PL/SQL User-Defined Subtypes

A subtype is a subset of another data type, which is called its base type. A subtype has the same valid operations
as its base type, but only a subset of its valid values.

PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL predefines the
subtypes CHARACTER and INTEGER as follows −

SUBTYPE CHARACTER IS CHAR;
SUBTYPE INTEGER IS NUMBER(38,0);

You can define and use your own subtypes. The following program illustrates defining and using a user-defined
subtype −

DECLARE
 SUBTYPE name IS char(20);
 SUBTYPE message IS varchar2(100);
 salutation name;
 greetings message;
BEGIN
 salutation := 'Reader ';
 greetings := 'Welcome to the World of PL/SQL';
 dbms_output.put_line('Hello ' || salutation || greetings);
END;
/

When the above code is executed at the SQL prompt, it produces the following result −

Hello Reader Welcome to the World of PL/SQL

PL/SQL procedure successfully completed.
NULLs in PL/SQL

PL/SQL NULL values represent missing or unknown data and they are not an integer, a character, or any
other specific data type. Note that NULL is not the same as an empty data string or the null character value '\0'.
A null can be assigned but it cannot be equated with anything, including itself.

Following table shows all the arithmetic operators supported by PL/SQL. Let us assume variable A holds 10
and variable B holds 5, then −

Operator Description Example

+ Adds two operands A + B will give 15

- Subtracts second operand from the first A - B will give 5

* Multiplies both operands A * B will give 50

/ Divides numerator by de-numerator A / B will give 2

** Exponentiation operator, raises one operand to the
power of other

A ** B will give
100000

LOOPS AND CONTROL STATEMENTS

Programming languages provide various control structures that allow for more complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and following is the
general form of a loop statement in most of the programming languages −

PL/SQL provides the following types of loop to handle the looping requirements. Click the following links to
check their detail.

S.No Loop Type & Description

1

PL/SQL Basic LOOP

In this loop structure, sequence of statements is enclosed between the LOOP
and the END LOOP statements. At each iteration, the sequence of statements is
executed and then control resumes at the top of the loop.

2

PL/SQL WHILE LOOP

Repeats a statement or group of statements while a given condition is true. It
tests the condition before executing the loop body.

3

PL/SQL FOR LOOP

Execute a sequence of statements multiple times and abbreviates the code that
manages the loop variable.

4
Nested loops in PL/SQL

You can use one or more loop inside any another basic loop, while, or for loop.

Labeling a PL/SQL Loop

PL/SQL loops can be labeled. The label should be enclosed by double angle brackets (<< and >>) and appear
at the beginning of the LOOP statement. The label name can also appear at the end of the LOOP statement.
You may use the label in the EXIT statement to exit from the loop.

The following program illustrates the concept −

DECLARE

 i number(1);

 j number(1);

BEGIN

 << outer_loop >>

 FOR i IN 1..3 LOOP

 << inner_loop >>

 FOR j IN 1..3 LOOP

 dbms_output.put_line('i is: '|| i || ' and j is: ' || j);

 END loop inner_loop;

 END loop outer_loop;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

i is: 1 and j is: 1

i is: 1 and j is: 2

i is: 1 and j is: 3

i is: 2 and j is: 1

i is: 2 and j is: 2

i is: 2 and j is: 3

i is: 3 and j is: 1

i is: 3 and j is: 2

i is: 3 and j is: 3

PL/SQL procedure successfully completed.

The Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all
automatic objects that were created in that scope are destroyed.

PL/SQL supports the following control statements. Labeling loops also help in taking the control outside a
loop. Click the following links to check their details.

S.No Control Statement & Description

1

EXIT statement

The Exit statement completes the loop and control passes to the statement
immediately after the END LOOP.

2

CONTINUE statement

Causes the loop to skip the remainder of its body and immediately retest its
condition prior to reiterating.

3

GOTO statement

Transfers control to the labeled statement. Though it is not advised to use the
GOTO statement in your program.

Following is the general form of a typical conditional (i.e., decision making) structure found in most of the
programming languages −

PL/SQL programming language provides following types of decision-making statements. Click the following
links to check their detail.

S.No Statement & Description

1

IF - THEN statement

The IF statement associates a condition with a sequence of statements enclosed
by the keywords THEN and END IF. If the condition is true, the statements get
executed and if the condition is false or NULL then the IF statement does
nothing.

2

IF-THEN-ELSE statement

IF statement adds the keyword ELSE followed by an alternative sequence of
statement. If the condition is false or NULL, then only the alternative sequence
of statements get executed. It ensures that either of the sequence of statements
is executed.

3
IF-THEN-ELSIF statement

It allows you to choose between several alternatives.

4

Case statement

Like the IF statement, the CASE statement selects one sequence of statements
to execute.

However, to select the sequence, the CASE statement uses a selector rather than
multiple Boolean expressions. A selector is an expression whose value is used
to select one of several alternatives.

5 Searched CASE statement

The searched CASE statement has no selector, and it's WHEN clauses contain
search conditions that yield Boolean values.

6

nested IF-THEN-ELSE

You can use one IF-THEN or IF-THEN-ELSIF statement inside another IF-
THEN or IF-THEN-ELSIF statement(s).

CURSOR MANAGEMENT:

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A cursor holds
the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is referred to as the active
set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows returned by
the SQL statement, one at a time. There are two types of cursors −

 Implicit cursors

 Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, when there is no
explicit cursor for the statement. Programmers cannot control the implicit cursors and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is associated with
this statement. For INSERT operations, the cursor holds the data that needs to be inserted. For UPDATE and
DELETE operations, the cursor identifies the rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has attributes
such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor has additional
attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use with
the FORALL statement. The following table provides the description of the most used attributes −

S.No Attribute & Description

1

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a
SELECT INTO statement returned one or more rows. Otherwise, it returns FALSE.

2

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE
statement affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns
FALSE.

3

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically
after executing its associated SQL statement.

4

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned
by a SELECT INTO statement.

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the example.

Example

We will be using the CUSTOMERS table we had created and used in the previous chapters.

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program will update the table and increase the salary of each customer by 500 and use
the SQL%ROWCOUNT attribute to determine the number of rows affected −

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 500;

 IF sql%notfound THEN

 dbms_output.put_line('no customers selected');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers selected ');

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been updated −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2500.00 |

| 2 | Khilan | 25 | Delhi | 2000.00 |

| 3 | kaushik | 23 | Kota | 2500.00 |

| 4 | Chaitali | 25 | Mumbai | 7000.00 |

| 5 | Hardik | 27 | Bhopal | 9000.00 |

| 6 | Komal | 22 | MP | 5000.00 |

+----+----------+-----+-----------+----------+

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area. An explicit
cursor should be defined in the declaration section of the PL/SQL Block. It is created on a SELECT Statement
which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

 Declaring the cursor for initializing the memory

 Opening the cursor for allocating the memory

 Fetching the cursor for retrieving the data

 Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement. For example −

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows returned by
the SQL statement into it. For example, we will open the above defined cursor as follows −

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from the above-
opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the above-opened cursor
as follows −

CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE

 c_id customers.id%type;

 c_name customers.name%type;

 c_addr customers.address%type;

 CURSOR c_customers is

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_addr;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

 END LOOP;

 CLOSE c_customers;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

EXCEPTION HANDLING:

 An exception is an error condition during a program execution. PL/SQL supports programmers to catch
such conditions using EXCEPTION block in the program and an appropriate action is taken against the error
condition. There are two types of exceptions −

 System-defined exceptions

 User-defined exceptions

Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions as you can
handle. The default exception will be handled using WHEN others THEN −

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we had created and used
in the previous chapters −

DECLARE

 c_id customers.id%type := 8;

 c_name customerS.Name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since there is no customer
with ID value 8 in our database, the program raises the run-time exception NO_DATA_FOUND, which is
captured in the EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal database error, but
exceptions can be raised explicitly by the programmer by using the command RAISE. Following is the simple
syntax for raising an exception −

DECLARE

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN

 statement;

END;

You can use the above syntax in raising the Oracle standard exception or any user-defined exception. In the
next section, we will give you an example on raising a user-defined exception. You can raise the Oracle
standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A user-defined
exception must be declared and then raised explicitly, using either a RAISE statement or the
procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is −

DECLARE

 my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the user enters an
invalid ID, the exception invalid_id is raised.

DECLARE

 c_id customers.id%type := &cc_id;

 c_name customerS.Name%type;

 c_addr customers.address%type;

 -- user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

 ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

 END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line('ID must be greater than zero!');

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

 PL/SQL procedure successfully completed.

Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is violated by a
program. For example, the predefined exception NO_DATA_FOUND is raised when a SELECT INTO
statement returns no rows. The following table lists few of the important pre-defined exceptions −

Exception
Oracle
Error

SQLCODE Description

ACCESS_INTO_NULL 06530 -6530
It is raised when a null object is automatically
assigned a value.

CASE_NOT_FOUND 06592 -6592
It is raised when none of the choices in the WHEN
clause of a CASE statement is selected, and there
is no ELSE clause.

COLLECTION_IS_NULL 06531 -6531

It is raised when a program attempts to apply
collection methods other than EXISTS to an
uninitialized nested table or varray, or the program
attempts to assign values to the elements of an
uninitialized nested table or varray.

DUP_VAL_ON_INDEX 00001 -1
It is raised when duplicate values are attempted to
be stored in a column with unique index.

INVALID_CURSOR 01001 -1001
It is raised when attempts are made to make a
cursor operation that is not allowed, such as closing
an unopened cursor.

INVALID_NUMBER 01722 -1722
It is raised when the conversion of a character
string into a number fails because the string does
not represent a valid number.

LOGIN_DENIED 01017 -1017
It is raised when a program attempts to log on to
the database with an invalid username or password.

NO_DATA_FOUND 01403 +100
It is raised when a SELECT INTO statement
returns no rows.

NOT_LOGGED_ON 01012 -1012
It is raised when a database call is issued without
being connected to the database.

PROGRAM_ERROR 06501 -6501 It is raised when PL/SQL has an internal problem.

ROWTYPE_MISMATCH 06504 -6504
It is raised when a cursor fetches value in a variable
having incompatible data type.

SELF_IS_NULL 30625 -30625
It is raised when a member method is invoked, but
the instance of the object type was not initialized.

STORAGE_ERROR 06500 -6500
It is raised when PL/SQL ran out of memory or
memory was corrupted.

TOO_MANY_ROWS 01422 -1422
It is raised when a SELECT INTO statement
returns more than one row.

VALUE_ERROR 06502 -6502
It is raised when an arithmetic, conversion,
truncation, or sizeconstraint error occurs.

ZERO_DIVIDE 01476 1476
It is raised when an attempt is made to divide a
number by zero.

TRIGGERS:

 Triggers are stored programs, which are automatically executed or fired when some events occur.
Triggers are, in fact, written to be executed in response to any of the following events −

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes −

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Where,

 CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing trigger with
the trigger_name.

 {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed. The INSTEAD
OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.

 [OF col_name] − This specifies the column name that will be updated.

 [ON table_name] − This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values for various
DML statements, such as INSERT, UPDATE, and DELETE.

 [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed for each row
being affected. Otherwise the trigger will execute just once when the SQL statement is executed, which
is called a table level trigger.

 WHEN (condition) − This provides a condition for rows for which the trigger would fire. This clause
is valid only for row-level triggers.

Example

To start with, we will be using the CUSTOMERS table we had created and used in the previous chapters −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program creates a row-level trigger for the customers table that would fire for INSERT or
UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger will display the salary
difference between the old values and new values −

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Trigger created.

The following points need to be considered here −

 OLD and NEW references are not available for table-level triggers, rather you can use them for record-
level triggers.

 If you want to query the table in the same trigger, then you should use the AFTER keyword, because
triggers can query the table or change it again only after the initial changes are applied and the table is
back in a consistent state.

 The above trigger has been written in such a way that it will fire before any DELETE or INSERT or
UPDATE operation on the table, but you can write your trigger on a single or multiple operations, for

example BEFORE DELETE, which will fire whenever a record will be deleted using the DELETE
operation on the table.

Triggering a Trigger

Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement, which will
create a new record in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in the CUSTOMERS table, the above create trigger, display_salary_changes will be
fired and it will display the following result −

Old salary:

New salary: 7500

Salary difference:

Because this is a new record, old salary is not available and the above result comes as null. Let us now perform
one more DML operation on the CUSTOMERS table. The UPDATE statement will update an existing record
in the table −

UPDATE customers

SET salary = salary + 500

WHERE id = 2;

When a record is updated in the CUSTOMERS table, the above create trigger, display_salary_changes will
be fired and it will display the following result −

Old salary: 1500

New salary: 2000

Salary difference: 500

FUNCTIONS:

 A function is same as a procedure except that it returns a value. Therefore, all the discussions of the
previous chapter are true for functions too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The simplified syntax for
the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows the modification of an existing function.

 The optional parameter list contains name, mode and types of the parameters. IN represents the value
that will be passed from outside and OUT represents the parameter that will be used to return a value
outside of the procedure.

 The function must contain a return statement.

 The RETURN clause specifies the data type you are going to return from the function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone function.

Example

The following example illustrates how to create and call a standalone function. This function returns the total
number of CUSTOMERS in the customers table.

We will use the CUSTOMERS table, which we had created in the PL/SQL Variables chapter −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers;

 RETURN total;

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Function created.

Calling a Function

While creating a function, you give a definition of what the function has to do. To use a function, you will have
to call that function to perform the defined task. When a program calls a function, the program control is
transferred to the called function.

A called function performs the defined task and when its return statement is executed or when the last end
statement is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name and if the
function returns a value, then you can store the returned value. Following program calls the
function totalCustomers from an anonymous block −

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example

The following example demonstrates Declaring, Defining, and Invoking a Simple PL/SQL Function that
computes and returns the maximum of two values.

DECLARE

 a number;

 b number;

 c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

 z number;

BEGIN

 IF x > y THEN

 z:= x;

 ELSE

 Z:= y;

 END IF;

 RETURN z;

END;

BEGIN

 a:= 23;

 b:= 45;

 c := findMax(a, b);

 dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Maximum of (23,45): 45

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions

We have seen that a program or subprogram may call another subprogram. When a subprogram calls itself, it
is referred to as a recursive call and the process is known as recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is defined as −

n! = n*(n-1)!

 = n*(n-1)*(n-2)!

 ...

 = n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by calling itself recursively −

DECLARE

 num number;

 factorial number;

FUNCTION fact(x number)

RETURN number

IS

 f number;

BEGIN

 IF x=0 THEN

 f := 1;

 ELSE

 f := x * fact(x-1);

 END IF;

RETURN f;

END;

BEGIN

 num:= 6;

 factorial := fact(num);

 dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Factorial 6 is 720

PROCEDURES:

 A subprogram is a program unit/module that performs a particular task. These subprograms are
combined to form larger programs. This is basically called the 'Modular design'. A subprogram can be
invoked by another subprogram or program which is called the calling program.

A subprogram can be created −

 At the schema level

 Inside a package

 Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created with the CREATE PROCEDURE
or the CREATE FUNCTION statement. It is stored in the database and can be deleted with the DROP
PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database and can be
deleted only when the package is deleted with the DROP PACKAGE statement. We will discuss packages in
the chapter 'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL provides
two kinds of subprograms −

 Functions − These subprograms return a single value; mainly used to compute and return a value.

 Procedures − These subprograms do not return a value directly; mainly used to perform an action.

This chapter is going to cover important aspects of a PL/SQL procedure. We will discuss PL/SQL
function in the next chapter.

Parts of a PL/SQL Subprogram

Each PL/SQL subprogram has a name, and may also have a parameter list. Like anonymous PL/SQL blocks,
the named blocks will also have the following three parts −

S.No Parts & Description

1

Declarative Part

It is an optional part. However, the declarative part for a subprogram does not
start with the DECLARE keyword. It contains declarations of types, cursors,
constants, variables, exceptions, and nested subprograms. These items are local
to the subprogram and cease to exist when the subprogram completes execution.

2

Executable Part

This is a mandatory part and contains statements that perform the designated
action.

3
Exception-handling

This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The simplified syntax
for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

 < procedure_body >

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows the modification of an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN represents the value
that will be passed from outside and OUT represents the parameter that will be used to return a value
outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example

The following example creates a simple procedure that displays the string 'Hello World!' on the screen when
executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

 Using the EXECUTE keyword

 Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN

 greetings;

END;

/

The above call will display −

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a procedure
is −

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms

The following table lists out the parameter modes in PL/SQL subprograms −

S.No Parameter Mode & Description

1

IN

An IN parameter lets you pass a value to the subprogram. It is a read-only
parameter. Inside the subprogram, an IN parameter acts like a constant. It
cannot be assigned a value. You can pass a constant, literal, initialized variable,
or expression as an IN parameter. You can also initialize it to a default value;
however, in that case, it is omitted from the subprogram call. It is the default
mode of parameter passing. Parameters are passed by reference.

2

OUT

An OUT parameter returns a value to the calling program. Inside the
subprogram, an OUT parameter acts like a variable. You can change its value
and reference the value after assigning it. The actual parameter must be
variable and it is passed by value.

3

IN OUT

An IN OUT parameter passes an initial value to a subprogram and returns an
updated value to the caller. It can be assigned a value and the value can be read.

The actual parameter corresponding to an IN OUT formal parameter must be a
variable, not a constant or an expression. Formal parameter must be assigned a
value. Actual parameter is passed by value.

IN & OUT Mode Example 1

This program finds the minimum of two values. Here, the procedure takes two numbers using the IN mode and
returns their minimum using the OUT parameters.

DECLARE

 a number;

 b number;

 c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

END;

BEGIN

 a:= 23;

 b:= 45;

 findMin(a, b, c);

 dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example shows how we can use the same
parameter to accept a value and then return another result.

DECLARE

 a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

 x := x * x;

END;

BEGIN

 a:= 23;

 squareNum(a);

 dbms_output.put_line(' Square of (23): ' || a);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters

Actual parameters can be passed in three ways −

 Positional notation

 Named notation

 Mixed notation

Positional Notation

In positional notation, you can call the procedure as −

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the second actual
parameter is substituted for the second formal parameter, and so on. So, a is substituted for x, b is substituted
for y, c is substituted for z and d is substituted for m.

Named Notation

In named notation, the actual parameter is associated with the formal parameter using the arrow symbol (=>
). The procedure call will be like the following −

findMin(x => a, y => b, z => c, m => d);

Mixed Notation

In mixed notation, you can mix both notations in procedure call; however, the positional notation should
precede the named notation.

The following call is legal −

findMin(a, b, c, m => d);

However, this is not legal:

findMin(x => a, b, c, d);

RELATIONSHIP BETWEEN SQL AND PL/SQL:

Introduction SQL: Structured Query Language (SQL) is a standard Database language that is used to
create, maintain and retrieve the relational database. The advantages of SQL are:

 SQL could be a high-level language that has a larger degree of abstraction than procedural languages.

 It enables the systems personnel end-users to deal with several database management systems where it
is available.

 Portability. Such porting could be required when the underlying DBMS needs to be upgraded or
changed.

 SQL specifies what’s needed and not however it ought to be done.

Introduction to PL/SQL: PL/SQL is a block-structured language that enables developers to combine the
power of SQL with procedural statements. All the statements of a block are passed to the oracle engine all at
once which increases processing speed and decreases the traffic. PL/SQL stands for “Procedural Language
extensions to SQL.” PL/SQL is a database-oriented programming language that extends SQL with procedural
capabilities. It was developed by Oracle Corporation in the early 90s to boost the capabilities of SQL. PL/SQL
adds selective (i.e. if…then…else…) and iterative constructs (ie. loops) to SQL. PL/SQL is most helpful put
in writing triggers and keeping procedures. Stored procedures square measure units of procedural code keep
during a compiled type inside the info. The advantages of PL/SQL are as below:

 Block structures: It consists of blocks of code, which can be nested within each other. Each block
forms a unit of a task or a logical module. PL/SQL blocks are often kept within the info and reused.

 Procedural language capability: It consists of procedural language constructs like conditional
statements (if-else statements) and loops like (FOR loops).

 Better performance: PL/SQL engine processes multiple SQL statements at the same time as one block,
thereby reducing network traffic.

 Error handling: PL/SQL handles errors or exceptions effectively throughout the execution of a
PL/SQL program. Once an associate degree exception is caught, specific actions can be taken
depending upon the type of the exception or it can be displayed to the user with a message.

Comparisons of SQL and PLSQL:

Sr.
No.

Basis of
Comparison SQL PL/SQL

1. Definition
It is a database Structured Query
Language.

It is a database programming
language using SQL.

2. Variables
Variables are not available in SQL.

Variables, constraints, and data
types features are available in
PL/SQL.

3. Control structures

No Supported Control Structures like for
loop, if, and other.

Control Structures are available
like, for loop, while loop, if, and
other.

4.
Nature of
Orientation

It is a Data-oriented language.
It is an application-oriented
language.

5. Operations

Query performs the single operation in
SQL.

PL/SQL block performs Group of
Operation as a single block
resulting in reduced network
traffic.

6.

Declarative/
Procedural
Language

SQL is a declarative language. PL/SQL is a procedural language.

7. Embed
SQL can be embedded in PL/SQL.

PL/SQL can’t be embedded in
SQL.

8.
Interaction with
Server

It directly interacts with the database
server.

It does not interact directly with
the database server.

9.
Exception
Handling

SQL does not provide error and exception
handling.

PL/SQL provides error and
exception handling.

Sr.
No.

Basis of
Comparison SQL PL/SQL

10. Writes

It is used to write queries using DDL (Data
Definition Language) and DML (Data
Manipulation Language) statements.

The code blocks, functions,
procedures triggers, and packages
can be written using PL/SQL.

11. Processing Speed
SQL does not offer a high processing speed
for voluminous data.

PL/SQL offers a high processing
speed for voluminous data.

12. Application

You can fetch, alter, add, delete, or
manipulate data in a database using SQL.

You can use PL/SQL to develop
applications that show
information from SQL in a
logical manner.

